L(s) = 1 | + (−1.52 − 1.81i)2-s + (−0.439 − 2.49i)3-s + (−0.623 + 3.53i)4-s + (−1.04 + 0.184i)5-s + (−3.84 + 4.58i)6-s + (−0.591 − 2.57i)7-s + (3.26 − 1.88i)8-s + (−3.18 + 1.16i)9-s + (1.92 + 1.61i)10-s − 2.17·11-s + 9.08·12-s + (4.74 + 3.98i)13-s + (−3.77 + 4.99i)14-s + (0.917 + 2.52i)15-s + (−1.61 − 0.588i)16-s + (1.08 − 2.97i)17-s + ⋯ |
L(s) = 1 | + (−1.07 − 1.28i)2-s + (−0.253 − 1.43i)3-s + (−0.311 + 1.76i)4-s + (−0.467 + 0.0824i)5-s + (−1.56 + 1.87i)6-s + (−0.223 − 0.974i)7-s + (1.15 − 0.665i)8-s + (−1.06 + 0.386i)9-s + (0.607 + 0.510i)10-s − 0.656·11-s + 2.62·12-s + (1.31 + 1.10i)13-s + (−1.00 + 1.33i)14-s + (0.236 + 0.651i)15-s + (−0.404 − 0.147i)16-s + (0.262 − 0.720i)17-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)(−0.611−0.791i)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)(−0.611−0.791i)Λ(1−s)
Degree: |
2 |
Conductor: |
133
= 7⋅19
|
Sign: |
−0.611−0.791i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ133(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 133, ( :1/2), −0.611−0.791i)
|
Particular Values
L(1) |
≈ |
0.178087+0.362561i |
L(21) |
≈ |
0.178087+0.362561i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(0.591+2.57i)T |
| 19 | 1+(2.57+3.51i)T |
good | 2 | 1+(1.52+1.81i)T+(−0.347+1.96i)T2 |
| 3 | 1+(0.439+2.49i)T+(−2.81+1.02i)T2 |
| 5 | 1+(1.04−0.184i)T+(4.69−1.71i)T2 |
| 11 | 1+2.17T+11T2 |
| 13 | 1+(−4.74−3.98i)T+(2.25+12.8i)T2 |
| 17 | 1+(−1.08+2.97i)T+(−13.0−10.9i)T2 |
| 23 | 1+(4.58+3.84i)T+(3.99+22.6i)T2 |
| 29 | 1+(1.85+0.327i)T+(27.2+9.91i)T2 |
| 31 | 1+(−0.545−0.945i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−6.26+3.61i)T+(18.5−32.0i)T2 |
| 41 | 1+(−4.49+3.77i)T+(7.11−40.3i)T2 |
| 43 | 1+(4.46+1.62i)T+(32.9+27.6i)T2 |
| 47 | 1+(−1.63−4.48i)T+(−36.0+30.2i)T2 |
| 53 | 1+(1.86+0.328i)T+(49.8+18.1i)T2 |
| 59 | 1+(−9.40−3.42i)T+(45.1+37.9i)T2 |
| 61 | 1+(−6.67+7.95i)T+(−10.5−60.0i)T2 |
| 67 | 1+(−9.19+10.9i)T+(−11.6−65.9i)T2 |
| 71 | 1+(−3.22+8.87i)T+(−54.3−45.6i)T2 |
| 73 | 1+(−3.68+0.648i)T+(68.5−24.9i)T2 |
| 79 | 1+(1.99−5.49i)T+(−60.5−50.7i)T2 |
| 83 | 1+(−8.54−4.93i)T+(41.5+71.8i)T2 |
| 89 | 1+(1.14−6.49i)T+(−83.6−30.4i)T2 |
| 97 | 1+(2.13+12.0i)T+(−91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.39753482781848467973095521780, −11.39044764605321757590170824751, −10.90051923011729591487613246808, −9.579499000262112365531195387059, −8.312821888951373586056730318014, −7.51773178210447787674590425405, −6.43795045213455444485276896242, −3.88729773565505927305122091253, −2.15381244638495666907614637675, −0.61152147060681640547688238642,
3.75037833464762693024362985515, 5.51339711492188987594581211275, 6.03072503249940143700816017122, 8.027175690369944214823895031200, 8.466862230928425251872017583149, 9.744115546772427045789734490221, 10.30187101214909844389931742984, 11.46357037280792581933053584087, 12.98495806458507061541735826527, 14.74574867841517582383671159273