L(s) = 1 | + 0.239·2-s − 1.94·4-s + (−0.590 − 1.02i)5-s − 0.942·8-s + (−0.141 − 0.244i)10-s + (−1.85 + 3.20i)11-s + (0.5 − 0.866i)13-s + 3.66·16-s + (3.47 + 6.01i)17-s + (0.971 − 1.68i)19-s + (1.14 + 1.98i)20-s + (−0.442 + 0.766i)22-s + (−2.80 − 4.85i)23-s + (1.80 − 3.12i)25-s + (0.119 − 0.207i)26-s + ⋯ |
L(s) = 1 | + 0.169·2-s − 0.971·4-s + (−0.264 − 0.457i)5-s − 0.333·8-s + (−0.0446 − 0.0774i)10-s + (−0.558 + 0.967i)11-s + (0.138 − 0.240i)13-s + 0.915·16-s + (0.841 + 1.45i)17-s + (0.222 − 0.385i)19-s + (0.256 + 0.444i)20-s + (−0.0944 + 0.163i)22-s + (−0.584 − 1.01i)23-s + (0.360 − 0.624i)25-s + (0.0234 − 0.0406i)26-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.713+0.701i)Λ(2−s)
Λ(s)=(=(1323s/2ΓC(s+1/2)L(s)(0.713+0.701i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
0.713+0.701i
|
Analytic conductor: |
10.5642 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(226,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :1/2), 0.713+0.701i)
|
Particular Values
L(1) |
≈ |
1.155339599 |
L(21) |
≈ |
1.155339599 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−0.239T+2T2 |
| 5 | 1+(0.590+1.02i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1.85−3.20i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.5+0.866i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−3.47−6.01i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.971+1.68i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.80+4.85i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.119−0.207i)T+(−14.5+25.1i)T2 |
| 31 | 1+1.66T+31T2 |
| 37 | 1+(−4.77+8.26i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−5.09+8.81i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.11+1.92i)T+(−21.5+37.2i)T2 |
| 47 | 1−5.82T+47T2 |
| 53 | 1+(5.80+10.0i)T+(−26.5+45.8i)T2 |
| 59 | 1−2.60T+59T2 |
| 61 | 1−7.60T+61T2 |
| 67 | 1−3.50T+67T2 |
| 71 | 1+8.60T+71T2 |
| 73 | 1+(−7.57−13.1i)T+(−36.5+63.2i)T2 |
| 79 | 1−7.37T+79T2 |
| 83 | 1+(−3.47−6.01i)T+(−41.5+71.8i)T2 |
| 89 | 1+(1.37−2.37i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−3.58−6.20i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.565926216408947908806645609260, −8.572142241661018183450106222551, −8.141585293510492404175272183235, −7.21893621266779548925389195545, −5.96904952571774913716353537214, −5.24883019518876309619515284810, −4.34456310924181443946902815707, −3.71779209579323638829133581267, −2.24953764418134427057046053530, −0.62733038170574024586408531600,
0.975115404953303915485986360416, 2.94143375880927461776752814589, 3.52184256725330665546435667056, 4.69179542635325791528519206505, 5.47455455923926382377595375092, 6.25397429037364525084099625280, 7.59230318074154993421913275532, 7.938834474345043991812028630911, 9.063726613605118100642580689380, 9.614006972044862323965711498244