L(s) = 1 | − 2.70i·2-s − 5.33·4-s + (−0.601 + 1.04i)5-s + 9.04i·8-s + (2.82 + 1.62i)10-s + (−2.15 + 1.24i)11-s + (1.63 − 0.942i)13-s + 13.8·16-s + (−0.601 + 1.04i)17-s + (6.46 − 3.73i)19-s + (3.21 − 5.56i)20-s + (3.36 + 5.83i)22-s + (2.63 + 1.52i)23-s + (1.77 + 3.07i)25-s + (−2.55 − 4.42i)26-s + ⋯ |
L(s) = 1 | − 1.91i·2-s − 2.66·4-s + (−0.268 + 0.465i)5-s + 3.19i·8-s + (0.892 + 0.515i)10-s + (−0.649 + 0.374i)11-s + (0.452 − 0.261i)13-s + 3.45·16-s + (−0.145 + 0.252i)17-s + (1.48 − 0.856i)19-s + (0.717 − 1.24i)20-s + (0.718 + 1.24i)22-s + (0.549 + 0.317i)23-s + (0.355 + 0.615i)25-s + (−0.500 − 0.867i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.628 + 0.777i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.628 + 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.208283904\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.208283904\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 2.70iT - 2T^{2} \) |
| 5 | \( 1 + (0.601 - 1.04i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.15 - 1.24i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.63 + 0.942i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.601 - 1.04i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.46 + 3.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.63 - 1.52i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.100i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.50iT - 31T^{2} \) |
| 37 | \( 1 + (0.865 + 1.49i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.36 + 5.82i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.00656 + 0.0113i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 1.43T + 47T^{2} \) |
| 53 | \( 1 + (-8.58 - 4.95i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 12.2T + 59T^{2} \) |
| 61 | \( 1 + 11.2iT - 61T^{2} \) |
| 67 | \( 1 + 5.15T + 67T^{2} \) |
| 71 | \( 1 + 12.0iT - 71T^{2} \) |
| 73 | \( 1 + (-7.51 - 4.33i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 5.49T + 79T^{2} \) |
| 83 | \( 1 + (1.60 - 2.78i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (3.98 + 6.89i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.06 - 1.19i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.543512481027391579450533245015, −8.949378566507984302736206111157, −7.972607631318237999199714006416, −7.09475503556444332991550257506, −5.51342804670186282643303631433, −4.85922543751953212747724151081, −3.70228898848335503230862552151, −3.08042190134435712251642577405, −2.11336963798105390706939984877, −0.77853394364952245572372416041,
0.869540799006626525937010832217, 3.27663283568203634790365038480, 4.34429731574114625854179927293, 5.17614030489735189395324564834, 5.75550565342263695996411064499, 6.75596880282336715370190418346, 7.39072330694166713862318205765, 8.360546384208959149322049652943, 8.567485296202136559380688107706, 9.604764225740140019689800184367