L(s) = 1 | + (−0.247 − 0.429i)2-s + (0.877 − 1.51i)4-s − 3.69·5-s − 1.86·8-s + (0.915 + 1.58i)10-s + 0.892·11-s + (−0.598 − 1.03i)13-s + (−1.29 − 2.23i)16-s + (−0.124 − 0.216i)17-s + (−1.40 + 2.43i)19-s + (−3.23 + 5.60i)20-s + (−0.221 − 0.383i)22-s − 2.47·23-s + 8.63·25-s + (−0.296 + 0.513i)26-s + ⋯ |
L(s) = 1 | + (−0.175 − 0.303i)2-s + (0.438 − 0.759i)4-s − 1.65·5-s − 0.658·8-s + (0.289 + 0.501i)10-s + 0.269·11-s + (−0.165 − 0.287i)13-s + (−0.323 − 0.559i)16-s + (−0.0303 − 0.0525i)17-s + (−0.322 + 0.557i)19-s + (−0.724 + 1.25i)20-s + (−0.0471 − 0.0817i)22-s − 0.516·23-s + 1.72·25-s + (−0.0581 + 0.100i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.172 - 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.172 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3658339955\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3658339955\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.247 + 0.429i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 3.69T + 5T^{2} \) |
| 11 | \( 1 - 0.892T + 11T^{2} \) |
| 13 | \( 1 + (0.598 + 1.03i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.124 + 0.216i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.40 - 2.43i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.47T + 23T^{2} \) |
| 29 | \( 1 + (2.07 - 3.58i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.79 + 3.10i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.36 - 4.09i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.39 + 4.14i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.98 - 8.64i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.08 - 8.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.94 - 8.56i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.906 - 1.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.40 - 9.35i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.514 - 0.891i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.94T + 71T^{2} \) |
| 73 | \( 1 + (-0.915 - 1.58i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.899 - 1.55i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.16 + 10.6i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.20 - 2.08i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.52 - 9.56i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.945624115478000789671679311858, −8.998735986059400251781060118077, −8.162817710544090878082521937414, −7.43390678930203551390735446198, −6.62237614566331527505907809613, −5.66926873909813967955168575626, −4.58728227890846827878950420718, −3.71045253591614713079734222723, −2.68840244572170762736917920629, −1.21273580301306149368209862530,
0.17273109107289023565981315062, 2.28480527407416353473641099712, 3.56655419505021388298811996358, 3.98413201121515381837288306071, 5.14373576955403822483828926156, 6.58835781889551403287386045094, 7.04153682807501320717754015982, 7.892496681925932641691078040520, 8.403295014061627006281883434108, 9.124853675656099384196576692205