L(s) = 1 | + 2.78·2-s − 0.244·4-s + 20.8·5-s − 22.9·8-s + 58.0·10-s + 65.7·11-s − 50.9·13-s − 61.9·16-s − 46.1·17-s + 62.1·19-s − 5.09·20-s + 183.·22-s + 125.·23-s + 308.·25-s − 141.·26-s − 168.·29-s + 187.·31-s + 11.0·32-s − 128.·34-s − 70.0·37-s + 173.·38-s − 478.·40-s + 188.·41-s + 239.·43-s − 16.0·44-s + 349.·46-s + 591.·47-s + ⋯ |
L(s) = 1 | + 0.984·2-s − 0.0305·4-s + 1.86·5-s − 1.01·8-s + 1.83·10-s + 1.80·11-s − 1.08·13-s − 0.968·16-s − 0.658·17-s + 0.750·19-s − 0.0569·20-s + 1.77·22-s + 1.13·23-s + 2.47·25-s − 1.06·26-s − 1.08·29-s + 1.08·31-s + 0.0611·32-s − 0.647·34-s − 0.311·37-s + 0.738·38-s − 1.89·40-s + 0.717·41-s + 0.849·43-s − 0.0551·44-s + 1.11·46-s + 1.83·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.015988501 |
L(21) |
≈ |
5.015988501 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−2.78T+8T2 |
| 5 | 1−20.8T+125T2 |
| 11 | 1−65.7T+1.33e3T2 |
| 13 | 1+50.9T+2.19e3T2 |
| 17 | 1+46.1T+4.91e3T2 |
| 19 | 1−62.1T+6.85e3T2 |
| 23 | 1−125.T+1.21e4T2 |
| 29 | 1+168.T+2.43e4T2 |
| 31 | 1−187.T+2.97e4T2 |
| 37 | 1+70.0T+5.06e4T2 |
| 41 | 1−188.T+6.89e4T2 |
| 43 | 1−239.T+7.95e4T2 |
| 47 | 1−591.T+1.03e5T2 |
| 53 | 1+464.T+1.48e5T2 |
| 59 | 1+325.T+2.05e5T2 |
| 61 | 1+261.T+2.26e5T2 |
| 67 | 1−340.T+3.00e5T2 |
| 71 | 1+752.T+3.57e5T2 |
| 73 | 1−245.T+3.89e5T2 |
| 79 | 1−546.T+4.93e5T2 |
| 83 | 1+144.T+5.71e5T2 |
| 89 | 1+603.T+7.04e5T2 |
| 97 | 1−1.35e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.161832431642491045494564647593, −9.039285798227110830434576582590, −7.25169433135849502073734553840, −6.44337805383435953594737042047, −5.87415210182200023725175113365, −5.04736806075532183373433863722, −4.32014485989271344474754956229, −3.10119958152249523559508703292, −2.19222594412830502245172157774, −1.03140266686704113044661630908,
1.03140266686704113044661630908, 2.19222594412830502245172157774, 3.10119958152249523559508703292, 4.32014485989271344474754956229, 5.04736806075532183373433863722, 5.87415210182200023725175113365, 6.44337805383435953594737042047, 7.25169433135849502073734553840, 9.039285798227110830434576582590, 9.161832431642491045494564647593