Properties

Label 2-1323-1.1-c3-0-80
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.541·2-s − 7.70·4-s − 16.7·5-s − 8.50·8-s − 9.06·10-s − 26.1·11-s + 34.4·13-s + 57.0·16-s − 81.5·17-s + 96.8·19-s + 128.·20-s − 14.1·22-s + 183.·23-s + 154.·25-s + 18.6·26-s − 42.2·29-s + 279.·31-s + 98.9·32-s − 44.1·34-s − 48.6·37-s + 52.4·38-s + 142.·40-s − 4.73·41-s − 419.·43-s + 201.·44-s + 99.6·46-s + 39.9·47-s + ⋯
L(s)  = 1  + 0.191·2-s − 0.963·4-s − 1.49·5-s − 0.375·8-s − 0.286·10-s − 0.717·11-s + 0.735·13-s + 0.891·16-s − 1.16·17-s + 1.16·19-s + 1.44·20-s − 0.137·22-s + 1.66·23-s + 1.23·25-s + 0.140·26-s − 0.270·29-s + 1.62·31-s + 0.546·32-s − 0.222·34-s − 0.216·37-s + 0.224·38-s + 0.562·40-s − 0.0180·41-s − 1.48·43-s + 0.691·44-s + 0.319·46-s + 0.124·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 0.541T + 8T^{2} \)
5 \( 1 + 16.7T + 125T^{2} \)
11 \( 1 + 26.1T + 1.33e3T^{2} \)
13 \( 1 - 34.4T + 2.19e3T^{2} \)
17 \( 1 + 81.5T + 4.91e3T^{2} \)
19 \( 1 - 96.8T + 6.85e3T^{2} \)
23 \( 1 - 183.T + 1.21e4T^{2} \)
29 \( 1 + 42.2T + 2.43e4T^{2} \)
31 \( 1 - 279.T + 2.97e4T^{2} \)
37 \( 1 + 48.6T + 5.06e4T^{2} \)
41 \( 1 + 4.73T + 6.89e4T^{2} \)
43 \( 1 + 419.T + 7.95e4T^{2} \)
47 \( 1 - 39.9T + 1.03e5T^{2} \)
53 \( 1 + 287.T + 1.48e5T^{2} \)
59 \( 1 + 465.T + 2.05e5T^{2} \)
61 \( 1 - 242.T + 2.26e5T^{2} \)
67 \( 1 + 634.T + 3.00e5T^{2} \)
71 \( 1 - 1.02e3T + 3.57e5T^{2} \)
73 \( 1 - 403.T + 3.89e5T^{2} \)
79 \( 1 - 308.T + 4.93e5T^{2} \)
83 \( 1 + 1.41e3T + 5.71e5T^{2} \)
89 \( 1 - 1.20e3T + 7.04e5T^{2} \)
97 \( 1 - 798.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.690488841863241462368781074409, −8.158273176903584331214449963834, −7.38733927941828277215578655639, −6.41894181264557405710867192107, −5.11144951940966431204644165129, −4.63627158130248088900584063579, −3.64634358677409485460508320678, −2.97367764596240666776793307015, −0.993534174044965387551935864291, 0, 0.993534174044965387551935864291, 2.97367764596240666776793307015, 3.64634358677409485460508320678, 4.63627158130248088900584063579, 5.11144951940966431204644165129, 6.41894181264557405710867192107, 7.38733927941828277215578655639, 8.158273176903584331214449963834, 8.690488841863241462368781074409

Graph of the $Z$-function along the critical line