L(s) = 1 | + 0.541·2-s − 7.70·4-s − 16.7·5-s − 8.50·8-s − 9.06·10-s − 26.1·11-s + 34.4·13-s + 57.0·16-s − 81.5·17-s + 96.8·19-s + 128.·20-s − 14.1·22-s + 183.·23-s + 154.·25-s + 18.6·26-s − 42.2·29-s + 279.·31-s + 98.9·32-s − 44.1·34-s − 48.6·37-s + 52.4·38-s + 142.·40-s − 4.73·41-s − 419.·43-s + 201.·44-s + 99.6·46-s + 39.9·47-s + ⋯ |
L(s) = 1 | + 0.191·2-s − 0.963·4-s − 1.49·5-s − 0.375·8-s − 0.286·10-s − 0.717·11-s + 0.735·13-s + 0.891·16-s − 1.16·17-s + 1.16·19-s + 1.44·20-s − 0.137·22-s + 1.66·23-s + 1.23·25-s + 0.140·26-s − 0.270·29-s + 1.62·31-s + 0.546·32-s − 0.222·34-s − 0.216·37-s + 0.224·38-s + 0.562·40-s − 0.0180·41-s − 1.48·43-s + 0.691·44-s + 0.319·46-s + 0.124·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−0.541T+8T2 |
| 5 | 1+16.7T+125T2 |
| 11 | 1+26.1T+1.33e3T2 |
| 13 | 1−34.4T+2.19e3T2 |
| 17 | 1+81.5T+4.91e3T2 |
| 19 | 1−96.8T+6.85e3T2 |
| 23 | 1−183.T+1.21e4T2 |
| 29 | 1+42.2T+2.43e4T2 |
| 31 | 1−279.T+2.97e4T2 |
| 37 | 1+48.6T+5.06e4T2 |
| 41 | 1+4.73T+6.89e4T2 |
| 43 | 1+419.T+7.95e4T2 |
| 47 | 1−39.9T+1.03e5T2 |
| 53 | 1+287.T+1.48e5T2 |
| 59 | 1+465.T+2.05e5T2 |
| 61 | 1−242.T+2.26e5T2 |
| 67 | 1+634.T+3.00e5T2 |
| 71 | 1−1.02e3T+3.57e5T2 |
| 73 | 1−403.T+3.89e5T2 |
| 79 | 1−308.T+4.93e5T2 |
| 83 | 1+1.41e3T+5.71e5T2 |
| 89 | 1−1.20e3T+7.04e5T2 |
| 97 | 1−798.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.690488841863241462368781074409, −8.158273176903584331214449963834, −7.38733927941828277215578655639, −6.41894181264557405710867192107, −5.11144951940966431204644165129, −4.63627158130248088900584063579, −3.64634358677409485460508320678, −2.97367764596240666776793307015, −0.993534174044965387551935864291, 0,
0.993534174044965387551935864291, 2.97367764596240666776793307015, 3.64634358677409485460508320678, 4.63627158130248088900584063579, 5.11144951940966431204644165129, 6.41894181264557405710867192107, 7.38733927941828277215578655639, 8.158273176903584331214449963834, 8.690488841863241462368781074409