# Properties

 Label 2-1323-1.1-c3-0-75 Degree $2$ Conductor $1323$ Sign $1$ Analytic cond. $78.0595$ Root an. cond. $8.83513$ Motivic weight $3$ Arithmetic yes Rational no Primitive yes Self-dual yes Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + 5.15·2-s + 18.5·4-s − 17.0·5-s + 54.6·8-s − 87.7·10-s − 30.3·11-s + 89.5·13-s + 132.·16-s − 13.4·17-s + 5.37·19-s − 316.·20-s − 156.·22-s + 167.·23-s + 164.·25-s + 461.·26-s − 135.·29-s + 18.9·31-s + 248.·32-s − 69.1·34-s + 402.·37-s + 27.7·38-s − 929.·40-s + 434.·41-s + 53.1·43-s − 564.·44-s + 863.·46-s + 155.·47-s + ⋯
 L(s)  = 1 + 1.82·2-s + 2.32·4-s − 1.52·5-s + 2.41·8-s − 2.77·10-s − 0.831·11-s + 1.91·13-s + 2.07·16-s − 0.191·17-s + 0.0648·19-s − 3.53·20-s − 1.51·22-s + 1.51·23-s + 1.31·25-s + 3.48·26-s − 0.864·29-s + 0.109·31-s + 1.37·32-s − 0.348·34-s + 1.78·37-s + 0.118·38-s − 3.67·40-s + 1.65·41-s + 0.188·43-s − 1.93·44-s + 2.76·46-s + 0.481·47-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1323$$    =    $$3^{3} \cdot 7^{2}$$ Sign: $1$ Analytic conductor: $$78.0595$$ Root analytic conductor: $$8.83513$$ Motivic weight: $$3$$ Rational: no Arithmetic: yes Character: Trivial Primitive: yes Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(2,\ 1323,\ (\ :3/2),\ 1)$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$5.769353722$$ $$L(\frac12)$$ $$\approx$$ $$5.769353722$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
7 $$1$$
good2 $$1 - 5.15T + 8T^{2}$$
5 $$1 + 17.0T + 125T^{2}$$
11 $$1 + 30.3T + 1.33e3T^{2}$$
13 $$1 - 89.5T + 2.19e3T^{2}$$
17 $$1 + 13.4T + 4.91e3T^{2}$$
19 $$1 - 5.37T + 6.85e3T^{2}$$
23 $$1 - 167.T + 1.21e4T^{2}$$
29 $$1 + 135.T + 2.43e4T^{2}$$
31 $$1 - 18.9T + 2.97e4T^{2}$$
37 $$1 - 402.T + 5.06e4T^{2}$$
41 $$1 - 434.T + 6.89e4T^{2}$$
43 $$1 - 53.1T + 7.95e4T^{2}$$
47 $$1 - 155.T + 1.03e5T^{2}$$
53 $$1 + 301.T + 1.48e5T^{2}$$
59 $$1 + 412.T + 2.05e5T^{2}$$
61 $$1 - 571.T + 2.26e5T^{2}$$
67 $$1 - 820.T + 3.00e5T^{2}$$
71 $$1 + 8.95T + 3.57e5T^{2}$$
73 $$1 + 21.9T + 3.89e5T^{2}$$
79 $$1 - 619.T + 4.93e5T^{2}$$
83 $$1 - 259.T + 5.71e5T^{2}$$
89 $$1 - 484.T + 7.04e5T^{2}$$
97 $$1 - 252.T + 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−9.113912978028741830044018854135, −8.047430028595814222394434173126, −7.50174896149147874827368716344, −6.56218254597625792967669205816, −5.77152848922439391695419823672, −4.83907158347323345339405052832, −4.03628000803736694765882855051, −3.47786240323766936653072639440, −2.58520971911799224825745820198, −0.941349331093177547140292894585, 0.941349331093177547140292894585, 2.58520971911799224825745820198, 3.47786240323766936653072639440, 4.03628000803736694765882855051, 4.83907158347323345339405052832, 5.77152848922439391695419823672, 6.56218254597625792967669205816, 7.50174896149147874827368716344, 8.047430028595814222394434173126, 9.113912978028741830044018854135