L(s) = 1 | + 5.15·2-s + 18.5·4-s − 17.0·5-s + 54.6·8-s − 87.7·10-s − 30.3·11-s + 89.5·13-s + 132.·16-s − 13.4·17-s + 5.37·19-s − 316.·20-s − 156.·22-s + 167.·23-s + 164.·25-s + 461.·26-s − 135.·29-s + 18.9·31-s + 248.·32-s − 69.1·34-s + 402.·37-s + 27.7·38-s − 929.·40-s + 434.·41-s + 53.1·43-s − 564.·44-s + 863.·46-s + 155.·47-s + ⋯ |
L(s) = 1 | + 1.82·2-s + 2.32·4-s − 1.52·5-s + 2.41·8-s − 2.77·10-s − 0.831·11-s + 1.91·13-s + 2.07·16-s − 0.191·17-s + 0.0648·19-s − 3.53·20-s − 1.51·22-s + 1.51·23-s + 1.31·25-s + 3.48·26-s − 0.864·29-s + 0.109·31-s + 1.37·32-s − 0.348·34-s + 1.78·37-s + 0.118·38-s − 3.67·40-s + 1.65·41-s + 0.188·43-s − 1.93·44-s + 2.76·46-s + 0.481·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.769353722 |
L(21) |
≈ |
5.769353722 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−5.15T+8T2 |
| 5 | 1+17.0T+125T2 |
| 11 | 1+30.3T+1.33e3T2 |
| 13 | 1−89.5T+2.19e3T2 |
| 17 | 1+13.4T+4.91e3T2 |
| 19 | 1−5.37T+6.85e3T2 |
| 23 | 1−167.T+1.21e4T2 |
| 29 | 1+135.T+2.43e4T2 |
| 31 | 1−18.9T+2.97e4T2 |
| 37 | 1−402.T+5.06e4T2 |
| 41 | 1−434.T+6.89e4T2 |
| 43 | 1−53.1T+7.95e4T2 |
| 47 | 1−155.T+1.03e5T2 |
| 53 | 1+301.T+1.48e5T2 |
| 59 | 1+412.T+2.05e5T2 |
| 61 | 1−571.T+2.26e5T2 |
| 67 | 1−820.T+3.00e5T2 |
| 71 | 1+8.95T+3.57e5T2 |
| 73 | 1+21.9T+3.89e5T2 |
| 79 | 1−619.T+4.93e5T2 |
| 83 | 1−259.T+5.71e5T2 |
| 89 | 1−484.T+7.04e5T2 |
| 97 | 1−252.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.113912978028741830044018854135, −8.047430028595814222394434173126, −7.50174896149147874827368716344, −6.56218254597625792967669205816, −5.77152848922439391695419823672, −4.83907158347323345339405052832, −4.03628000803736694765882855051, −3.47786240323766936653072639440, −2.58520971911799224825745820198, −0.941349331093177547140292894585,
0.941349331093177547140292894585, 2.58520971911799224825745820198, 3.47786240323766936653072639440, 4.03628000803736694765882855051, 4.83907158347323345339405052832, 5.77152848922439391695419823672, 6.56218254597625792967669205816, 7.50174896149147874827368716344, 8.047430028595814222394434173126, 9.113912978028741830044018854135