L(s) = 1 | − 3.68·2-s + 5.59·4-s − 11.8·5-s + 8.85·8-s + 43.7·10-s − 22.2·11-s − 75.1·13-s − 77.4·16-s + 74.1·17-s + 7.41·19-s − 66.4·20-s + 81.9·22-s + 205.·23-s + 15.9·25-s + 276.·26-s − 148.·29-s + 164.·31-s + 214.·32-s − 273.·34-s − 205.·37-s − 27.3·38-s − 105.·40-s + 83.9·41-s − 368.·43-s − 124.·44-s − 758.·46-s + 98.3·47-s + ⋯ |
L(s) = 1 | − 1.30·2-s + 0.699·4-s − 1.06·5-s + 0.391·8-s + 1.38·10-s − 0.608·11-s − 1.60·13-s − 1.21·16-s + 1.05·17-s + 0.0895·19-s − 0.743·20-s + 0.793·22-s + 1.86·23-s + 0.127·25-s + 2.08·26-s − 0.949·29-s + 0.952·31-s + 1.18·32-s − 1.37·34-s − 0.911·37-s − 0.116·38-s − 0.415·40-s + 0.319·41-s − 1.30·43-s − 0.426·44-s − 2.43·46-s + 0.305·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+3.68T+8T2 |
| 5 | 1+11.8T+125T2 |
| 11 | 1+22.2T+1.33e3T2 |
| 13 | 1+75.1T+2.19e3T2 |
| 17 | 1−74.1T+4.91e3T2 |
| 19 | 1−7.41T+6.85e3T2 |
| 23 | 1−205.T+1.21e4T2 |
| 29 | 1+148.T+2.43e4T2 |
| 31 | 1−164.T+2.97e4T2 |
| 37 | 1+205.T+5.06e4T2 |
| 41 | 1−83.9T+6.89e4T2 |
| 43 | 1+368.T+7.95e4T2 |
| 47 | 1−98.3T+1.03e5T2 |
| 53 | 1−293.T+1.48e5T2 |
| 59 | 1−509.T+2.05e5T2 |
| 61 | 1−696.T+2.26e5T2 |
| 67 | 1−370.T+3.00e5T2 |
| 71 | 1+121.T+3.57e5T2 |
| 73 | 1−682.T+3.89e5T2 |
| 79 | 1+669.T+4.93e5T2 |
| 83 | 1+1.18e3T+5.71e5T2 |
| 89 | 1+598.T+7.04e5T2 |
| 97 | 1−1.03e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.716825033313170160833453516212, −8.147539251295607173850099776354, −7.22934923458286036095388404925, −7.15856371889363806204943324487, −5.36298718312043907799187142132, −4.66973403249598545827425700627, −3.44245629685745685875045094732, −2.33702165415097516486525467925, −0.910064134066559161033882164644, 0,
0.910064134066559161033882164644, 2.33702165415097516486525467925, 3.44245629685745685875045094732, 4.66973403249598545827425700627, 5.36298718312043907799187142132, 7.15856371889363806204943324487, 7.22934923458286036095388404925, 8.147539251295607173850099776354, 8.716825033313170160833453516212