Properties

Label 2-1323-1.1-c3-0-70
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.68·2-s + 5.59·4-s − 11.8·5-s + 8.85·8-s + 43.7·10-s − 22.2·11-s − 75.1·13-s − 77.4·16-s + 74.1·17-s + 7.41·19-s − 66.4·20-s + 81.9·22-s + 205.·23-s + 15.9·25-s + 276.·26-s − 148.·29-s + 164.·31-s + 214.·32-s − 273.·34-s − 205.·37-s − 27.3·38-s − 105.·40-s + 83.9·41-s − 368.·43-s − 124.·44-s − 758.·46-s + 98.3·47-s + ⋯
L(s)  = 1  − 1.30·2-s + 0.699·4-s − 1.06·5-s + 0.391·8-s + 1.38·10-s − 0.608·11-s − 1.60·13-s − 1.21·16-s + 1.05·17-s + 0.0895·19-s − 0.743·20-s + 0.793·22-s + 1.86·23-s + 0.127·25-s + 2.08·26-s − 0.949·29-s + 0.952·31-s + 1.18·32-s − 1.37·34-s − 0.911·37-s − 0.116·38-s − 0.415·40-s + 0.319·41-s − 1.30·43-s − 0.426·44-s − 2.43·46-s + 0.305·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 3.68T + 8T^{2} \)
5 \( 1 + 11.8T + 125T^{2} \)
11 \( 1 + 22.2T + 1.33e3T^{2} \)
13 \( 1 + 75.1T + 2.19e3T^{2} \)
17 \( 1 - 74.1T + 4.91e3T^{2} \)
19 \( 1 - 7.41T + 6.85e3T^{2} \)
23 \( 1 - 205.T + 1.21e4T^{2} \)
29 \( 1 + 148.T + 2.43e4T^{2} \)
31 \( 1 - 164.T + 2.97e4T^{2} \)
37 \( 1 + 205.T + 5.06e4T^{2} \)
41 \( 1 - 83.9T + 6.89e4T^{2} \)
43 \( 1 + 368.T + 7.95e4T^{2} \)
47 \( 1 - 98.3T + 1.03e5T^{2} \)
53 \( 1 - 293.T + 1.48e5T^{2} \)
59 \( 1 - 509.T + 2.05e5T^{2} \)
61 \( 1 - 696.T + 2.26e5T^{2} \)
67 \( 1 - 370.T + 3.00e5T^{2} \)
71 \( 1 + 121.T + 3.57e5T^{2} \)
73 \( 1 - 682.T + 3.89e5T^{2} \)
79 \( 1 + 669.T + 4.93e5T^{2} \)
83 \( 1 + 1.18e3T + 5.71e5T^{2} \)
89 \( 1 + 598.T + 7.04e5T^{2} \)
97 \( 1 - 1.03e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.716825033313170160833453516212, −8.147539251295607173850099776354, −7.22934923458286036095388404925, −7.15856371889363806204943324487, −5.36298718312043907799187142132, −4.66973403249598545827425700627, −3.44245629685745685875045094732, −2.33702165415097516486525467925, −0.910064134066559161033882164644, 0, 0.910064134066559161033882164644, 2.33702165415097516486525467925, 3.44245629685745685875045094732, 4.66973403249598545827425700627, 5.36298718312043907799187142132, 7.15856371889363806204943324487, 7.22934923458286036095388404925, 8.147539251295607173850099776354, 8.716825033313170160833453516212

Graph of the $Z$-function along the critical line