Properties

Label 2-1323-1.1-c3-0-69
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.49·2-s − 1.76·4-s + 14.5·5-s + 24.3·8-s − 36.4·10-s − 0.0794·11-s + 86.9·13-s − 46.7·16-s + 93.0·17-s − 147.·19-s − 25.7·20-s + 0.198·22-s + 154.·23-s + 87.7·25-s − 217.·26-s + 205.·29-s + 271.·31-s − 78.3·32-s − 232.·34-s + 48.3·37-s + 369.·38-s + 355.·40-s + 52.3·41-s + 48.0·43-s + 0.140·44-s − 385.·46-s − 266.·47-s + ⋯
L(s)  = 1  − 0.882·2-s − 0.220·4-s + 1.30·5-s + 1.07·8-s − 1.15·10-s − 0.00217·11-s + 1.85·13-s − 0.730·16-s + 1.32·17-s − 1.78·19-s − 0.288·20-s + 0.00192·22-s + 1.39·23-s + 0.701·25-s − 1.63·26-s + 1.31·29-s + 1.57·31-s − 0.433·32-s − 1.17·34-s + 0.214·37-s + 1.57·38-s + 1.40·40-s + 0.199·41-s + 0.170·43-s + 0.000480·44-s − 1.23·46-s − 0.825·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.935561780\)
\(L(\frac12)\) \(\approx\) \(1.935561780\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 2.49T + 8T^{2} \)
5 \( 1 - 14.5T + 125T^{2} \)
11 \( 1 + 0.0794T + 1.33e3T^{2} \)
13 \( 1 - 86.9T + 2.19e3T^{2} \)
17 \( 1 - 93.0T + 4.91e3T^{2} \)
19 \( 1 + 147.T + 6.85e3T^{2} \)
23 \( 1 - 154.T + 1.21e4T^{2} \)
29 \( 1 - 205.T + 2.43e4T^{2} \)
31 \( 1 - 271.T + 2.97e4T^{2} \)
37 \( 1 - 48.3T + 5.06e4T^{2} \)
41 \( 1 - 52.3T + 6.89e4T^{2} \)
43 \( 1 - 48.0T + 7.95e4T^{2} \)
47 \( 1 + 266.T + 1.03e5T^{2} \)
53 \( 1 - 11.8T + 1.48e5T^{2} \)
59 \( 1 + 542.T + 2.05e5T^{2} \)
61 \( 1 - 84.4T + 2.26e5T^{2} \)
67 \( 1 + 51.0T + 3.00e5T^{2} \)
71 \( 1 - 495.T + 3.57e5T^{2} \)
73 \( 1 - 71.1T + 3.89e5T^{2} \)
79 \( 1 - 378.T + 4.93e5T^{2} \)
83 \( 1 + 486.T + 5.71e5T^{2} \)
89 \( 1 + 1.16e3T + 7.04e5T^{2} \)
97 \( 1 - 1.31e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.232604390673024542310175417159, −8.527137108928056810930408162870, −8.057755545431497260423609901463, −6.66471062806954564738825877904, −6.14197633716183375129192531482, −5.14052044914316208690829376696, −4.15430607284986968739286354749, −2.86773863087654842400470117102, −1.55240959726617889010219230939, −0.907769866796201208928267673463, 0.907769866796201208928267673463, 1.55240959726617889010219230939, 2.86773863087654842400470117102, 4.15430607284986968739286354749, 5.14052044914316208690829376696, 6.14197633716183375129192531482, 6.66471062806954564738825877904, 8.057755545431497260423609901463, 8.527137108928056810930408162870, 9.232604390673024542310175417159

Graph of the $Z$-function along the critical line