L(s) = 1 | − 2.49·2-s − 1.76·4-s + 14.5·5-s + 24.3·8-s − 36.4·10-s − 0.0794·11-s + 86.9·13-s − 46.7·16-s + 93.0·17-s − 147.·19-s − 25.7·20-s + 0.198·22-s + 154.·23-s + 87.7·25-s − 217.·26-s + 205.·29-s + 271.·31-s − 78.3·32-s − 232.·34-s + 48.3·37-s + 369.·38-s + 355.·40-s + 52.3·41-s + 48.0·43-s + 0.140·44-s − 385.·46-s − 266.·47-s + ⋯ |
L(s) = 1 | − 0.882·2-s − 0.220·4-s + 1.30·5-s + 1.07·8-s − 1.15·10-s − 0.00217·11-s + 1.85·13-s − 0.730·16-s + 1.32·17-s − 1.78·19-s − 0.288·20-s + 0.00192·22-s + 1.39·23-s + 0.701·25-s − 1.63·26-s + 1.31·29-s + 1.57·31-s − 0.433·32-s − 1.17·34-s + 0.214·37-s + 1.57·38-s + 1.40·40-s + 0.199·41-s + 0.170·43-s + 0.000480·44-s − 1.23·46-s − 0.825·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.935561780 |
L(21) |
≈ |
1.935561780 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+2.49T+8T2 |
| 5 | 1−14.5T+125T2 |
| 11 | 1+0.0794T+1.33e3T2 |
| 13 | 1−86.9T+2.19e3T2 |
| 17 | 1−93.0T+4.91e3T2 |
| 19 | 1+147.T+6.85e3T2 |
| 23 | 1−154.T+1.21e4T2 |
| 29 | 1−205.T+2.43e4T2 |
| 31 | 1−271.T+2.97e4T2 |
| 37 | 1−48.3T+5.06e4T2 |
| 41 | 1−52.3T+6.89e4T2 |
| 43 | 1−48.0T+7.95e4T2 |
| 47 | 1+266.T+1.03e5T2 |
| 53 | 1−11.8T+1.48e5T2 |
| 59 | 1+542.T+2.05e5T2 |
| 61 | 1−84.4T+2.26e5T2 |
| 67 | 1+51.0T+3.00e5T2 |
| 71 | 1−495.T+3.57e5T2 |
| 73 | 1−71.1T+3.89e5T2 |
| 79 | 1−378.T+4.93e5T2 |
| 83 | 1+486.T+5.71e5T2 |
| 89 | 1+1.16e3T+7.04e5T2 |
| 97 | 1−1.31e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.232604390673024542310175417159, −8.527137108928056810930408162870, −8.057755545431497260423609901463, −6.66471062806954564738825877904, −6.14197633716183375129192531482, −5.14052044914316208690829376696, −4.15430607284986968739286354749, −2.86773863087654842400470117102, −1.55240959726617889010219230939, −0.907769866796201208928267673463,
0.907769866796201208928267673463, 1.55240959726617889010219230939, 2.86773863087654842400470117102, 4.15430607284986968739286354749, 5.14052044914316208690829376696, 6.14197633716183375129192531482, 6.66471062806954564738825877904, 8.057755545431497260423609901463, 8.527137108928056810930408162870, 9.232604390673024542310175417159