Properties

Label 2-1323-1.1-c3-0-63
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.09·2-s + 17.9·4-s − 18.5·5-s + 50.5·8-s − 94.7·10-s − 1.05·11-s − 58.7·13-s + 113.·16-s + 43.7·17-s + 131.·19-s − 333.·20-s − 5.37·22-s + 161.·23-s + 220.·25-s − 299.·26-s + 64.0·29-s + 55.9·31-s + 175.·32-s + 222.·34-s + 296.·37-s + 671.·38-s − 940.·40-s + 80.6·41-s − 134.·43-s − 18.9·44-s + 821.·46-s + 233.·47-s + ⋯
L(s)  = 1  + 1.80·2-s + 2.24·4-s − 1.66·5-s + 2.23·8-s − 2.99·10-s − 0.0289·11-s − 1.25·13-s + 1.78·16-s + 0.624·17-s + 1.59·19-s − 3.72·20-s − 0.0521·22-s + 1.46·23-s + 1.76·25-s − 2.25·26-s + 0.409·29-s + 0.324·31-s + 0.971·32-s + 1.12·34-s + 1.31·37-s + 2.86·38-s − 3.71·40-s + 0.307·41-s − 0.476·43-s − 0.0648·44-s + 2.63·46-s + 0.724·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.151679682\)
\(L(\frac12)\) \(\approx\) \(5.151679682\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 5.09T + 8T^{2} \)
5 \( 1 + 18.5T + 125T^{2} \)
11 \( 1 + 1.05T + 1.33e3T^{2} \)
13 \( 1 + 58.7T + 2.19e3T^{2} \)
17 \( 1 - 43.7T + 4.91e3T^{2} \)
19 \( 1 - 131.T + 6.85e3T^{2} \)
23 \( 1 - 161.T + 1.21e4T^{2} \)
29 \( 1 - 64.0T + 2.43e4T^{2} \)
31 \( 1 - 55.9T + 2.97e4T^{2} \)
37 \( 1 - 296.T + 5.06e4T^{2} \)
41 \( 1 - 80.6T + 6.89e4T^{2} \)
43 \( 1 + 134.T + 7.95e4T^{2} \)
47 \( 1 - 233.T + 1.03e5T^{2} \)
53 \( 1 - 387.T + 1.48e5T^{2} \)
59 \( 1 - 722.T + 2.05e5T^{2} \)
61 \( 1 + 388.T + 2.26e5T^{2} \)
67 \( 1 + 730.T + 3.00e5T^{2} \)
71 \( 1 + 685.T + 3.57e5T^{2} \)
73 \( 1 - 275.T + 3.89e5T^{2} \)
79 \( 1 - 854.T + 4.93e5T^{2} \)
83 \( 1 - 922.T + 5.71e5T^{2} \)
89 \( 1 + 301.T + 7.04e5T^{2} \)
97 \( 1 + 913.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.282517451975435014638674012148, −7.950882383811106001454609044179, −7.38014733470074022132095539442, −6.85270039733057877670900319529, −5.55184639852496652550641973113, −4.87613024791808590327393997607, −4.19530409908093360024800364369, −3.26444592284693035249632935752, −2.71002204849745509345082157547, −0.876891727874681402328249459012, 0.876891727874681402328249459012, 2.71002204849745509345082157547, 3.26444592284693035249632935752, 4.19530409908093360024800364369, 4.87613024791808590327393997607, 5.55184639852496652550641973113, 6.85270039733057877670900319529, 7.38014733470074022132095539442, 7.950882383811106001454609044179, 9.282517451975435014638674012148

Graph of the $Z$-function along the critical line