L(s) = 1 | + 5.09·2-s + 17.9·4-s − 18.5·5-s + 50.5·8-s − 94.7·10-s − 1.05·11-s − 58.7·13-s + 113.·16-s + 43.7·17-s + 131.·19-s − 333.·20-s − 5.37·22-s + 161.·23-s + 220.·25-s − 299.·26-s + 64.0·29-s + 55.9·31-s + 175.·32-s + 222.·34-s + 296.·37-s + 671.·38-s − 940.·40-s + 80.6·41-s − 134.·43-s − 18.9·44-s + 821.·46-s + 233.·47-s + ⋯ |
L(s) = 1 | + 1.80·2-s + 2.24·4-s − 1.66·5-s + 2.23·8-s − 2.99·10-s − 0.0289·11-s − 1.25·13-s + 1.78·16-s + 0.624·17-s + 1.59·19-s − 3.72·20-s − 0.0521·22-s + 1.46·23-s + 1.76·25-s − 2.25·26-s + 0.409·29-s + 0.324·31-s + 0.971·32-s + 1.12·34-s + 1.31·37-s + 2.86·38-s − 3.71·40-s + 0.307·41-s − 0.476·43-s − 0.0648·44-s + 2.63·46-s + 0.724·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.151679682 |
L(21) |
≈ |
5.151679682 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−5.09T+8T2 |
| 5 | 1+18.5T+125T2 |
| 11 | 1+1.05T+1.33e3T2 |
| 13 | 1+58.7T+2.19e3T2 |
| 17 | 1−43.7T+4.91e3T2 |
| 19 | 1−131.T+6.85e3T2 |
| 23 | 1−161.T+1.21e4T2 |
| 29 | 1−64.0T+2.43e4T2 |
| 31 | 1−55.9T+2.97e4T2 |
| 37 | 1−296.T+5.06e4T2 |
| 41 | 1−80.6T+6.89e4T2 |
| 43 | 1+134.T+7.95e4T2 |
| 47 | 1−233.T+1.03e5T2 |
| 53 | 1−387.T+1.48e5T2 |
| 59 | 1−722.T+2.05e5T2 |
| 61 | 1+388.T+2.26e5T2 |
| 67 | 1+730.T+3.00e5T2 |
| 71 | 1+685.T+3.57e5T2 |
| 73 | 1−275.T+3.89e5T2 |
| 79 | 1−854.T+4.93e5T2 |
| 83 | 1−922.T+5.71e5T2 |
| 89 | 1+301.T+7.04e5T2 |
| 97 | 1+913.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.282517451975435014638674012148, −7.950882383811106001454609044179, −7.38014733470074022132095539442, −6.85270039733057877670900319529, −5.55184639852496652550641973113, −4.87613024791808590327393997607, −4.19530409908093360024800364369, −3.26444592284693035249632935752, −2.71002204849745509345082157547, −0.876891727874681402328249459012,
0.876891727874681402328249459012, 2.71002204849745509345082157547, 3.26444592284693035249632935752, 4.19530409908093360024800364369, 4.87613024791808590327393997607, 5.55184639852496652550641973113, 6.85270039733057877670900319529, 7.38014733470074022132095539442, 7.950882383811106001454609044179, 9.282517451975435014638674012148