L(s) = 1 | + 0.560·2-s − 7.68·4-s + 12.9·5-s − 8.79·8-s + 7.26·10-s + 48.2·11-s + 36.3·13-s + 56.5·16-s + 83.2·17-s − 67.4·19-s − 99.5·20-s + 27.0·22-s − 30.6·23-s + 42.8·25-s + 20.3·26-s + 294.·29-s − 270.·31-s + 102.·32-s + 46.7·34-s − 204.·37-s − 37.8·38-s − 114.·40-s + 287.·41-s − 55.4·43-s − 370.·44-s − 17.1·46-s − 191.·47-s + ⋯ |
L(s) = 1 | + 0.198·2-s − 0.960·4-s + 1.15·5-s − 0.388·8-s + 0.229·10-s + 1.32·11-s + 0.774·13-s + 0.883·16-s + 1.18·17-s − 0.814·19-s − 1.11·20-s + 0.262·22-s − 0.277·23-s + 0.342·25-s + 0.153·26-s + 1.88·29-s − 1.56·31-s + 0.564·32-s + 0.235·34-s − 0.907·37-s − 0.161·38-s − 0.450·40-s + 1.09·41-s − 0.196·43-s − 1.26·44-s − 0.0550·46-s − 0.593·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.762725439\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.762725439\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 0.560T + 8T^{2} \) |
| 5 | \( 1 - 12.9T + 125T^{2} \) |
| 11 | \( 1 - 48.2T + 1.33e3T^{2} \) |
| 13 | \( 1 - 36.3T + 2.19e3T^{2} \) |
| 17 | \( 1 - 83.2T + 4.91e3T^{2} \) |
| 19 | \( 1 + 67.4T + 6.85e3T^{2} \) |
| 23 | \( 1 + 30.6T + 1.21e4T^{2} \) |
| 29 | \( 1 - 294.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 270.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 204.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 287.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 55.4T + 7.95e4T^{2} \) |
| 47 | \( 1 + 191.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 521.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 381.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 155.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 65.1T + 3.00e5T^{2} \) |
| 71 | \( 1 + 256.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 318.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 77.7T + 4.93e5T^{2} \) |
| 83 | \( 1 - 836.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.59e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.18e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.062133135395288912530015842991, −8.850739853497396173990246645391, −7.73454635949751500005943355278, −6.43634640121443794978240275124, −5.97526350594839504105123209844, −5.09723553435956171734116182726, −4.08822225425534827987252077575, −3.29939362854787232810385678014, −1.81424326813261366354153769407, −0.873694399173240745216618664997,
0.873694399173240745216618664997, 1.81424326813261366354153769407, 3.29939362854787232810385678014, 4.08822225425534827987252077575, 5.09723553435956171734116182726, 5.97526350594839504105123209844, 6.43634640121443794978240275124, 7.73454635949751500005943355278, 8.850739853497396173990246645391, 9.062133135395288912530015842991