Properties

Label 2-1323-1.1-c3-0-32
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.63·2-s − 5.33·4-s + 12.3·5-s + 21.7·8-s − 20.2·10-s − 29.0·11-s − 52.9·13-s + 7.18·16-s − 122.·17-s + 141.·19-s − 66.0·20-s + 47.3·22-s + 60.2·23-s + 28.2·25-s + 86.4·26-s − 126.·29-s + 150.·31-s − 185.·32-s + 199.·34-s − 341.·37-s − 230.·38-s + 269.·40-s + 292.·41-s + 290.·43-s + 154.·44-s − 98.3·46-s + 284.·47-s + ⋯
L(s)  = 1  − 0.576·2-s − 0.667·4-s + 1.10·5-s + 0.961·8-s − 0.638·10-s − 0.795·11-s − 1.13·13-s + 0.112·16-s − 1.74·17-s + 1.70·19-s − 0.738·20-s + 0.458·22-s + 0.546·23-s + 0.225·25-s + 0.652·26-s − 0.813·29-s + 0.873·31-s − 1.02·32-s + 1.00·34-s − 1.51·37-s − 0.982·38-s + 1.06·40-s + 1.11·41-s + 1.03·43-s + 0.530·44-s − 0.315·46-s + 0.881·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.170251342\)
\(L(\frac12)\) \(\approx\) \(1.170251342\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 1.63T + 8T^{2} \)
5 \( 1 - 12.3T + 125T^{2} \)
11 \( 1 + 29.0T + 1.33e3T^{2} \)
13 \( 1 + 52.9T + 2.19e3T^{2} \)
17 \( 1 + 122.T + 4.91e3T^{2} \)
19 \( 1 - 141.T + 6.85e3T^{2} \)
23 \( 1 - 60.2T + 1.21e4T^{2} \)
29 \( 1 + 126.T + 2.43e4T^{2} \)
31 \( 1 - 150.T + 2.97e4T^{2} \)
37 \( 1 + 341.T + 5.06e4T^{2} \)
41 \( 1 - 292.T + 6.89e4T^{2} \)
43 \( 1 - 290.T + 7.95e4T^{2} \)
47 \( 1 - 284.T + 1.03e5T^{2} \)
53 \( 1 - 387.T + 1.48e5T^{2} \)
59 \( 1 - 269.T + 2.05e5T^{2} \)
61 \( 1 + 239.T + 2.26e5T^{2} \)
67 \( 1 + 712.T + 3.00e5T^{2} \)
71 \( 1 - 270.T + 3.57e5T^{2} \)
73 \( 1 - 146.T + 3.89e5T^{2} \)
79 \( 1 + 652.T + 4.93e5T^{2} \)
83 \( 1 + 35.0T + 5.71e5T^{2} \)
89 \( 1 + 1.39e3T + 7.04e5T^{2} \)
97 \( 1 - 805.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.258253384852841714954852901159, −8.760975053492387201892472556998, −7.59334869017956356302516858660, −7.08253696310729198901740202132, −5.74407357763876428622812804977, −5.14262597096247036350807784449, −4.30550543225456266162042882036, −2.80425838869806080043994210985, −1.89891939543967985502763485048, −0.58934184109266061182029721433, 0.58934184109266061182029721433, 1.89891939543967985502763485048, 2.80425838869806080043994210985, 4.30550543225456266162042882036, 5.14262597096247036350807784449, 5.74407357763876428622812804977, 7.08253696310729198901740202132, 7.59334869017956356302516858660, 8.760975053492387201892472556998, 9.258253384852841714954852901159

Graph of the $Z$-function along the critical line