Properties

Label 2-1323-1.1-c3-0-24
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.959·2-s − 7.07·4-s − 10.2·5-s + 14.4·8-s + 9.87·10-s + 28.3·11-s − 5.96·13-s + 42.7·16-s + 104.·17-s − 34.0·19-s + 72.8·20-s − 27.1·22-s − 103.·23-s − 19.1·25-s + 5.72·26-s − 195.·29-s − 9.17·31-s − 156.·32-s − 100.·34-s + 245.·37-s + 32.6·38-s − 148.·40-s − 366.·41-s − 366.·43-s − 200.·44-s + 99.4·46-s − 244.·47-s + ⋯
L(s)  = 1  − 0.339·2-s − 0.884·4-s − 0.920·5-s + 0.639·8-s + 0.312·10-s + 0.776·11-s − 0.127·13-s + 0.667·16-s + 1.49·17-s − 0.411·19-s + 0.814·20-s − 0.263·22-s − 0.939·23-s − 0.152·25-s + 0.0431·26-s − 1.25·29-s − 0.0531·31-s − 0.866·32-s − 0.506·34-s + 1.09·37-s + 0.139·38-s − 0.588·40-s − 1.39·41-s − 1.29·43-s − 0.687·44-s + 0.318·46-s − 0.758·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8311784389\)
\(L(\frac12)\) \(\approx\) \(0.8311784389\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 0.959T + 8T^{2} \)
5 \( 1 + 10.2T + 125T^{2} \)
11 \( 1 - 28.3T + 1.33e3T^{2} \)
13 \( 1 + 5.96T + 2.19e3T^{2} \)
17 \( 1 - 104.T + 4.91e3T^{2} \)
19 \( 1 + 34.0T + 6.85e3T^{2} \)
23 \( 1 + 103.T + 1.21e4T^{2} \)
29 \( 1 + 195.T + 2.43e4T^{2} \)
31 \( 1 + 9.17T + 2.97e4T^{2} \)
37 \( 1 - 245.T + 5.06e4T^{2} \)
41 \( 1 + 366.T + 6.89e4T^{2} \)
43 \( 1 + 366.T + 7.95e4T^{2} \)
47 \( 1 + 244.T + 1.03e5T^{2} \)
53 \( 1 - 281.T + 1.48e5T^{2} \)
59 \( 1 - 181.T + 2.05e5T^{2} \)
61 \( 1 - 24.1T + 2.26e5T^{2} \)
67 \( 1 + 336.T + 3.00e5T^{2} \)
71 \( 1 - 196.T + 3.57e5T^{2} \)
73 \( 1 - 683.T + 3.89e5T^{2} \)
79 \( 1 - 619.T + 4.93e5T^{2} \)
83 \( 1 - 176.T + 5.71e5T^{2} \)
89 \( 1 - 761.T + 7.04e5T^{2} \)
97 \( 1 - 1.27e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.352057427645012862769541472919, −8.228422299111423589581516694042, −7.978191715923465048146161206937, −7.01125628679825607009602591911, −5.86782068841014698626448530484, −4.94343684859852725027966272725, −3.94063277071945029910019992598, −3.48045965269665244402197762674, −1.69223889413001091209951861786, −0.49965696433510390071892428664, 0.49965696433510390071892428664, 1.69223889413001091209951861786, 3.48045965269665244402197762674, 3.94063277071945029910019992598, 4.94343684859852725027966272725, 5.86782068841014698626448530484, 7.01125628679825607009602591911, 7.978191715923465048146161206937, 8.228422299111423589581516694042, 9.352057427645012862769541472919

Graph of the $Z$-function along the critical line