L(s) = 1 | − 0.959·2-s − 7.07·4-s − 10.2·5-s + 14.4·8-s + 9.87·10-s + 28.3·11-s − 5.96·13-s + 42.7·16-s + 104.·17-s − 34.0·19-s + 72.8·20-s − 27.1·22-s − 103.·23-s − 19.1·25-s + 5.72·26-s − 195.·29-s − 9.17·31-s − 156.·32-s − 100.·34-s + 245.·37-s + 32.6·38-s − 148.·40-s − 366.·41-s − 366.·43-s − 200.·44-s + 99.4·46-s − 244.·47-s + ⋯ |
L(s) = 1 | − 0.339·2-s − 0.884·4-s − 0.920·5-s + 0.639·8-s + 0.312·10-s + 0.776·11-s − 0.127·13-s + 0.667·16-s + 1.49·17-s − 0.411·19-s + 0.814·20-s − 0.263·22-s − 0.939·23-s − 0.152·25-s + 0.0431·26-s − 1.25·29-s − 0.0531·31-s − 0.866·32-s − 0.506·34-s + 1.09·37-s + 0.139·38-s − 0.588·40-s − 1.39·41-s − 1.29·43-s − 0.687·44-s + 0.318·46-s − 0.758·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.8311784389 |
L(21) |
≈ |
0.8311784389 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+0.959T+8T2 |
| 5 | 1+10.2T+125T2 |
| 11 | 1−28.3T+1.33e3T2 |
| 13 | 1+5.96T+2.19e3T2 |
| 17 | 1−104.T+4.91e3T2 |
| 19 | 1+34.0T+6.85e3T2 |
| 23 | 1+103.T+1.21e4T2 |
| 29 | 1+195.T+2.43e4T2 |
| 31 | 1+9.17T+2.97e4T2 |
| 37 | 1−245.T+5.06e4T2 |
| 41 | 1+366.T+6.89e4T2 |
| 43 | 1+366.T+7.95e4T2 |
| 47 | 1+244.T+1.03e5T2 |
| 53 | 1−281.T+1.48e5T2 |
| 59 | 1−181.T+2.05e5T2 |
| 61 | 1−24.1T+2.26e5T2 |
| 67 | 1+336.T+3.00e5T2 |
| 71 | 1−196.T+3.57e5T2 |
| 73 | 1−683.T+3.89e5T2 |
| 79 | 1−619.T+4.93e5T2 |
| 83 | 1−176.T+5.71e5T2 |
| 89 | 1−761.T+7.04e5T2 |
| 97 | 1−1.27e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.352057427645012862769541472919, −8.228422299111423589581516694042, −7.978191715923465048146161206937, −7.01125628679825607009602591911, −5.86782068841014698626448530484, −4.94343684859852725027966272725, −3.94063277071945029910019992598, −3.48045965269665244402197762674, −1.69223889413001091209951861786, −0.49965696433510390071892428664,
0.49965696433510390071892428664, 1.69223889413001091209951861786, 3.48045965269665244402197762674, 3.94063277071945029910019992598, 4.94343684859852725027966272725, 5.86782068841014698626448530484, 7.01125628679825607009602591911, 7.978191715923465048146161206937, 8.228422299111423589581516694042, 9.352057427645012862769541472919