L(s) = 1 | + 1.55·2-s − 5.59·4-s − 9.81·5-s − 21.0·8-s − 15.2·10-s + 70.6·11-s − 55.5·13-s + 12.0·16-s − 13.4·17-s − 91.3·19-s + 54.8·20-s + 109.·22-s − 113.·23-s − 28.7·25-s − 86.1·26-s − 12.4·29-s − 222.·31-s + 187.·32-s − 20.8·34-s + 257.·37-s − 141.·38-s + 206.·40-s − 286.·41-s + 4.81·43-s − 394.·44-s − 176.·46-s + 609.·47-s + ⋯ |
L(s) = 1 | + 0.548·2-s − 0.699·4-s − 0.877·5-s − 0.931·8-s − 0.481·10-s + 1.93·11-s − 1.18·13-s + 0.188·16-s − 0.191·17-s − 1.10·19-s + 0.613·20-s + 1.06·22-s − 1.03·23-s − 0.229·25-s − 0.650·26-s − 0.0800·29-s − 1.29·31-s + 1.03·32-s − 0.104·34-s + 1.14·37-s − 0.605·38-s + 0.817·40-s − 1.09·41-s + 0.0170·43-s − 1.35·44-s − 0.565·46-s + 1.89·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.182476888 |
L(21) |
≈ |
1.182476888 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−1.55T+8T2 |
| 5 | 1+9.81T+125T2 |
| 11 | 1−70.6T+1.33e3T2 |
| 13 | 1+55.5T+2.19e3T2 |
| 17 | 1+13.4T+4.91e3T2 |
| 19 | 1+91.3T+6.85e3T2 |
| 23 | 1+113.T+1.21e4T2 |
| 29 | 1+12.4T+2.43e4T2 |
| 31 | 1+222.T+2.97e4T2 |
| 37 | 1−257.T+5.06e4T2 |
| 41 | 1+286.T+6.89e4T2 |
| 43 | 1−4.81T+7.95e4T2 |
| 47 | 1−609.T+1.03e5T2 |
| 53 | 1+691.T+1.48e5T2 |
| 59 | 1+217.T+2.05e5T2 |
| 61 | 1−764.T+2.26e5T2 |
| 67 | 1+98.5T+3.00e5T2 |
| 71 | 1−921.T+3.57e5T2 |
| 73 | 1−219.T+3.89e5T2 |
| 79 | 1+9.42T+4.93e5T2 |
| 83 | 1−800.T+5.71e5T2 |
| 89 | 1−253.T+7.04e5T2 |
| 97 | 1−59.2T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.268491110835052559365642046344, −8.504644085997278823099769013714, −7.65539286313107260325773739977, −6.69081232173316504816994556883, −5.91351902338233832174905264054, −4.74994257986462456538914680011, −4.07000984457363537420500899047, −3.57523787172336859884453511744, −2.06755728409460973295178542563, −0.49306999778494320234740779790,
0.49306999778494320234740779790, 2.06755728409460973295178542563, 3.57523787172336859884453511744, 4.07000984457363537420500899047, 4.74994257986462456538914680011, 5.91351902338233832174905264054, 6.69081232173316504816994556883, 7.65539286313107260325773739977, 8.504644085997278823099769013714, 9.268491110835052559365642046344