Properties

Label 2-1323-1.1-c3-0-150
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.49·2-s + 12.1·4-s − 8.19·5-s + 18.8·8-s − 36.8·10-s − 33.3·11-s + 54.5·13-s − 13.0·16-s − 1.19·17-s + 124.·19-s − 99.8·20-s − 150.·22-s − 133.·23-s − 57.7·25-s + 245.·26-s − 145.·29-s − 78.1·31-s − 208.·32-s − 5.38·34-s − 134.·37-s + 558.·38-s − 154.·40-s − 178.·41-s + 211.·43-s − 406.·44-s − 602.·46-s − 518.·47-s + ⋯
L(s)  = 1  + 1.58·2-s + 1.52·4-s − 0.733·5-s + 0.830·8-s − 1.16·10-s − 0.915·11-s + 1.16·13-s − 0.203·16-s − 0.0171·17-s + 1.50·19-s − 1.11·20-s − 1.45·22-s − 1.21·23-s − 0.462·25-s + 1.85·26-s − 0.932·29-s − 0.452·31-s − 1.15·32-s − 0.0271·34-s − 0.598·37-s + 2.38·38-s − 0.609·40-s − 0.679·41-s + 0.748·43-s − 1.39·44-s − 1.92·46-s − 1.60·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 4.49T + 8T^{2} \)
5 \( 1 + 8.19T + 125T^{2} \)
11 \( 1 + 33.3T + 1.33e3T^{2} \)
13 \( 1 - 54.5T + 2.19e3T^{2} \)
17 \( 1 + 1.19T + 4.91e3T^{2} \)
19 \( 1 - 124.T + 6.85e3T^{2} \)
23 \( 1 + 133.T + 1.21e4T^{2} \)
29 \( 1 + 145.T + 2.43e4T^{2} \)
31 \( 1 + 78.1T + 2.97e4T^{2} \)
37 \( 1 + 134.T + 5.06e4T^{2} \)
41 \( 1 + 178.T + 6.89e4T^{2} \)
43 \( 1 - 211.T + 7.95e4T^{2} \)
47 \( 1 + 518.T + 1.03e5T^{2} \)
53 \( 1 - 269.T + 1.48e5T^{2} \)
59 \( 1 + 306.T + 2.05e5T^{2} \)
61 \( 1 + 38.0T + 2.26e5T^{2} \)
67 \( 1 - 610.T + 3.00e5T^{2} \)
71 \( 1 + 1.08e3T + 3.57e5T^{2} \)
73 \( 1 + 1.08e3T + 3.89e5T^{2} \)
79 \( 1 + 1.19e3T + 4.93e5T^{2} \)
83 \( 1 + 150.T + 5.71e5T^{2} \)
89 \( 1 - 221.T + 7.04e5T^{2} \)
97 \( 1 - 1.60e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.680305850150465548539146802624, −7.77505762193283109661809868763, −7.12339391432473026597989086552, −5.94942413269228364629466529952, −5.50249393359753868369871466895, −4.48319752255775413531902372464, −3.66698260874981768601655991106, −3.07726222332152190730412189863, −1.75116663222038568429291041664, 0, 1.75116663222038568429291041664, 3.07726222332152190730412189863, 3.66698260874981768601655991106, 4.48319752255775413531902372464, 5.50249393359753868369871466895, 5.94942413269228364629466529952, 7.12339391432473026597989086552, 7.77505762193283109661809868763, 8.680305850150465548539146802624

Graph of the $Z$-function along the critical line