L(s) = 1 | + 4.49·2-s + 12.1·4-s − 8.19·5-s + 18.8·8-s − 36.8·10-s − 33.3·11-s + 54.5·13-s − 13.0·16-s − 1.19·17-s + 124.·19-s − 99.8·20-s − 150.·22-s − 133.·23-s − 57.7·25-s + 245.·26-s − 145.·29-s − 78.1·31-s − 208.·32-s − 5.38·34-s − 134.·37-s + 558.·38-s − 154.·40-s − 178.·41-s + 211.·43-s − 406.·44-s − 602.·46-s − 518.·47-s + ⋯ |
L(s) = 1 | + 1.58·2-s + 1.52·4-s − 0.733·5-s + 0.830·8-s − 1.16·10-s − 0.915·11-s + 1.16·13-s − 0.203·16-s − 0.0171·17-s + 1.50·19-s − 1.11·20-s − 1.45·22-s − 1.21·23-s − 0.462·25-s + 1.85·26-s − 0.932·29-s − 0.452·31-s − 1.15·32-s − 0.0271·34-s − 0.598·37-s + 2.38·38-s − 0.609·40-s − 0.679·41-s + 0.748·43-s − 1.39·44-s − 1.92·46-s − 1.60·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−4.49T+8T2 |
| 5 | 1+8.19T+125T2 |
| 11 | 1+33.3T+1.33e3T2 |
| 13 | 1−54.5T+2.19e3T2 |
| 17 | 1+1.19T+4.91e3T2 |
| 19 | 1−124.T+6.85e3T2 |
| 23 | 1+133.T+1.21e4T2 |
| 29 | 1+145.T+2.43e4T2 |
| 31 | 1+78.1T+2.97e4T2 |
| 37 | 1+134.T+5.06e4T2 |
| 41 | 1+178.T+6.89e4T2 |
| 43 | 1−211.T+7.95e4T2 |
| 47 | 1+518.T+1.03e5T2 |
| 53 | 1−269.T+1.48e5T2 |
| 59 | 1+306.T+2.05e5T2 |
| 61 | 1+38.0T+2.26e5T2 |
| 67 | 1−610.T+3.00e5T2 |
| 71 | 1+1.08e3T+3.57e5T2 |
| 73 | 1+1.08e3T+3.89e5T2 |
| 79 | 1+1.19e3T+4.93e5T2 |
| 83 | 1+150.T+5.71e5T2 |
| 89 | 1−221.T+7.04e5T2 |
| 97 | 1−1.60e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.680305850150465548539146802624, −7.77505762193283109661809868763, −7.12339391432473026597989086552, −5.94942413269228364629466529952, −5.50249393359753868369871466895, −4.48319752255775413531902372464, −3.66698260874981768601655991106, −3.07726222332152190730412189863, −1.75116663222038568429291041664, 0,
1.75116663222038568429291041664, 3.07726222332152190730412189863, 3.66698260874981768601655991106, 4.48319752255775413531902372464, 5.50249393359753868369871466895, 5.94942413269228364629466529952, 7.12339391432473026597989086552, 7.77505762193283109661809868763, 8.680305850150465548539146802624