Properties

Label 2-1323-1.1-c3-0-149
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.62·2-s + 5.17·4-s + 4.84·5-s − 10.2·8-s + 17.5·10-s + 20.1·11-s − 72.2·13-s − 78.6·16-s + 132.·17-s − 76.9·19-s + 25.0·20-s + 73.0·22-s + 22.4·23-s − 101.·25-s − 262.·26-s − 193.·29-s − 89.7·31-s − 203.·32-s + 480.·34-s + 47.9·37-s − 279.·38-s − 49.6·40-s + 3.41·41-s − 168.·43-s + 104.·44-s + 81.5·46-s + 163.·47-s + ⋯
L(s)  = 1  + 1.28·2-s + 0.646·4-s + 0.433·5-s − 0.453·8-s + 0.555·10-s + 0.551·11-s − 1.54·13-s − 1.22·16-s + 1.88·17-s − 0.928·19-s + 0.280·20-s + 0.708·22-s + 0.203·23-s − 0.812·25-s − 1.97·26-s − 1.23·29-s − 0.520·31-s − 1.12·32-s + 2.42·34-s + 0.212·37-s − 1.19·38-s − 0.196·40-s + 0.0130·41-s − 0.597·43-s + 0.356·44-s + 0.261·46-s + 0.506·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 3.62T + 8T^{2} \)
5 \( 1 - 4.84T + 125T^{2} \)
11 \( 1 - 20.1T + 1.33e3T^{2} \)
13 \( 1 + 72.2T + 2.19e3T^{2} \)
17 \( 1 - 132.T + 4.91e3T^{2} \)
19 \( 1 + 76.9T + 6.85e3T^{2} \)
23 \( 1 - 22.4T + 1.21e4T^{2} \)
29 \( 1 + 193.T + 2.43e4T^{2} \)
31 \( 1 + 89.7T + 2.97e4T^{2} \)
37 \( 1 - 47.9T + 5.06e4T^{2} \)
41 \( 1 - 3.41T + 6.89e4T^{2} \)
43 \( 1 + 168.T + 7.95e4T^{2} \)
47 \( 1 - 163.T + 1.03e5T^{2} \)
53 \( 1 + 337.T + 1.48e5T^{2} \)
59 \( 1 - 517.T + 2.05e5T^{2} \)
61 \( 1 + 424.T + 2.26e5T^{2} \)
67 \( 1 + 978.T + 3.00e5T^{2} \)
71 \( 1 - 40.4T + 3.57e5T^{2} \)
73 \( 1 + 482.T + 3.89e5T^{2} \)
79 \( 1 + 1.07e3T + 4.93e5T^{2} \)
83 \( 1 + 811.T + 5.71e5T^{2} \)
89 \( 1 - 997.T + 7.04e5T^{2} \)
97 \( 1 - 1.45e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.042430340079441333087672076475, −7.79854130099281383584608851255, −7.05454601753816632156780003639, −5.98730234035718768595715272733, −5.48678772481665136108743758097, −4.60554978977674733573807022600, −3.73157410514654410789081414592, −2.81489485382786384081831546026, −1.74056630075626407783961112073, 0, 1.74056630075626407783961112073, 2.81489485382786384081831546026, 3.73157410514654410789081414592, 4.60554978977674733573807022600, 5.48678772481665136108743758097, 5.98730234035718768595715272733, 7.05454601753816632156780003639, 7.79854130099281383584608851255, 9.042430340079441333087672076475

Graph of the $Z$-function along the critical line