L(s) = 1 | + 1.63·2-s − 5.33·4-s + 12.3·5-s − 21.7·8-s + 20.2·10-s + 29.0·11-s + 52.9·13-s + 7.18·16-s − 122.·17-s − 141.·19-s − 66.0·20-s + 47.3·22-s − 60.2·23-s + 28.2·25-s + 86.4·26-s + 126.·29-s − 150.·31-s + 185.·32-s − 199.·34-s − 341.·37-s − 230.·38-s − 269.·40-s + 292.·41-s + 290.·43-s − 154.·44-s − 98.3·46-s + 284.·47-s + ⋯ |
L(s) = 1 | + 0.576·2-s − 0.667·4-s + 1.10·5-s − 0.961·8-s + 0.638·10-s + 0.795·11-s + 1.13·13-s + 0.112·16-s − 1.74·17-s − 1.70·19-s − 0.738·20-s + 0.458·22-s − 0.546·23-s + 0.225·25-s + 0.652·26-s + 0.813·29-s − 0.873·31-s + 1.02·32-s − 1.00·34-s − 1.51·37-s − 0.982·38-s − 1.06·40-s + 1.11·41-s + 1.03·43-s − 0.530·44-s − 0.315·46-s + 0.881·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−1.63T+8T2 |
| 5 | 1−12.3T+125T2 |
| 11 | 1−29.0T+1.33e3T2 |
| 13 | 1−52.9T+2.19e3T2 |
| 17 | 1+122.T+4.91e3T2 |
| 19 | 1+141.T+6.85e3T2 |
| 23 | 1+60.2T+1.21e4T2 |
| 29 | 1−126.T+2.43e4T2 |
| 31 | 1+150.T+2.97e4T2 |
| 37 | 1+341.T+5.06e4T2 |
| 41 | 1−292.T+6.89e4T2 |
| 43 | 1−290.T+7.95e4T2 |
| 47 | 1−284.T+1.03e5T2 |
| 53 | 1+387.T+1.48e5T2 |
| 59 | 1−269.T+2.05e5T2 |
| 61 | 1−239.T+2.26e5T2 |
| 67 | 1+712.T+3.00e5T2 |
| 71 | 1+270.T+3.57e5T2 |
| 73 | 1+146.T+3.89e5T2 |
| 79 | 1+652.T+4.93e5T2 |
| 83 | 1+35.0T+5.71e5T2 |
| 89 | 1+1.39e3T+7.04e5T2 |
| 97 | 1+805.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.874171026592983364970462415918, −8.438165542169460199597778921662, −6.81639981116577737478348706469, −6.18467686629707301649257214343, −5.62509665454960362738627244671, −4.36961827561430713668416298739, −3.96854712322408522064097291236, −2.54904261613481540568649223430, −1.53718974564308458735721115539, 0,
1.53718974564308458735721115539, 2.54904261613481540568649223430, 3.96854712322408522064097291236, 4.36961827561430713668416298739, 5.62509665454960362738627244671, 6.18467686629707301649257214343, 6.81639981116577737478348706469, 8.438165542169460199597778921662, 8.874171026592983364970462415918