L(s) = 1 | + 1.63·2-s − 5.33·4-s + 12.3·5-s − 21.7·8-s + 20.2·10-s + 29.0·11-s + 52.9·13-s + 7.18·16-s − 122.·17-s − 141.·19-s − 66.0·20-s + 47.3·22-s − 60.2·23-s + 28.2·25-s + 86.4·26-s + 126.·29-s − 150.·31-s + 185.·32-s − 199.·34-s − 341.·37-s − 230.·38-s − 269.·40-s + 292.·41-s + 290.·43-s − 154.·44-s − 98.3·46-s + 284.·47-s + ⋯ |
L(s) = 1 | + 0.576·2-s − 0.667·4-s + 1.10·5-s − 0.961·8-s + 0.638·10-s + 0.795·11-s + 1.13·13-s + 0.112·16-s − 1.74·17-s − 1.70·19-s − 0.738·20-s + 0.458·22-s − 0.546·23-s + 0.225·25-s + 0.652·26-s + 0.813·29-s − 0.873·31-s + 1.02·32-s − 1.00·34-s − 1.51·37-s − 0.982·38-s − 1.06·40-s + 1.11·41-s + 1.03·43-s − 0.530·44-s − 0.315·46-s + 0.881·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 1.63T + 8T^{2} \) |
| 5 | \( 1 - 12.3T + 125T^{2} \) |
| 11 | \( 1 - 29.0T + 1.33e3T^{2} \) |
| 13 | \( 1 - 52.9T + 2.19e3T^{2} \) |
| 17 | \( 1 + 122.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 141.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 60.2T + 1.21e4T^{2} \) |
| 29 | \( 1 - 126.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 150.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 341.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 292.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 290.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 284.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 387.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 269.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 239.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 712.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 270.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 146.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 652.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 35.0T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.39e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 805.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.874171026592983364970462415918, −8.438165542169460199597778921662, −6.81639981116577737478348706469, −6.18467686629707301649257214343, −5.62509665454960362738627244671, −4.36961827561430713668416298739, −3.96854712322408522064097291236, −2.54904261613481540568649223430, −1.53718974564308458735721115539, 0,
1.53718974564308458735721115539, 2.54904261613481540568649223430, 3.96854712322408522064097291236, 4.36961827561430713668416298739, 5.62509665454960362738627244671, 6.18467686629707301649257214343, 6.81639981116577737478348706469, 8.438165542169460199597778921662, 8.874171026592983364970462415918