Properties

Label 2-1323-1.1-c3-0-123
Degree 22
Conductor 13231323
Sign 1-1
Analytic cond. 78.059578.0595
Root an. cond. 8.835138.83513
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.68·2-s + 5.59·4-s + 11.8·5-s + 8.85·8-s − 43.7·10-s − 22.2·11-s + 75.1·13-s − 77.4·16-s − 74.1·17-s − 7.41·19-s + 66.4·20-s + 81.9·22-s + 205.·23-s + 15.9·25-s − 276.·26-s − 148.·29-s − 164.·31-s + 214.·32-s + 273.·34-s − 205.·37-s + 27.3·38-s + 105.·40-s − 83.9·41-s − 368.·43-s − 124.·44-s − 758.·46-s − 98.3·47-s + ⋯
L(s)  = 1  − 1.30·2-s + 0.699·4-s + 1.06·5-s + 0.391·8-s − 1.38·10-s − 0.608·11-s + 1.60·13-s − 1.21·16-s − 1.05·17-s − 0.0895·19-s + 0.743·20-s + 0.793·22-s + 1.86·23-s + 0.127·25-s − 2.08·26-s − 0.949·29-s − 0.952·31-s + 1.18·32-s + 1.37·34-s − 0.911·37-s + 0.116·38-s + 0.415·40-s − 0.319·41-s − 1.30·43-s − 0.426·44-s − 2.43·46-s − 0.305·47-s + ⋯

Functional equation

Λ(s)=(1323s/2ΓC(s)L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}
Λ(s)=(1323s/2ΓC(s+3/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 13231323    =    33723^{3} \cdot 7^{2}
Sign: 1-1
Analytic conductor: 78.059578.0595
Root analytic conductor: 8.835138.83513
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 1323, ( :3/2), 1)(2,\ 1323,\ (\ :3/2),\ -1)

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
good2 1+3.68T+8T2 1 + 3.68T + 8T^{2}
5 111.8T+125T2 1 - 11.8T + 125T^{2}
11 1+22.2T+1.33e3T2 1 + 22.2T + 1.33e3T^{2}
13 175.1T+2.19e3T2 1 - 75.1T + 2.19e3T^{2}
17 1+74.1T+4.91e3T2 1 + 74.1T + 4.91e3T^{2}
19 1+7.41T+6.85e3T2 1 + 7.41T + 6.85e3T^{2}
23 1205.T+1.21e4T2 1 - 205.T + 1.21e4T^{2}
29 1+148.T+2.43e4T2 1 + 148.T + 2.43e4T^{2}
31 1+164.T+2.97e4T2 1 + 164.T + 2.97e4T^{2}
37 1+205.T+5.06e4T2 1 + 205.T + 5.06e4T^{2}
41 1+83.9T+6.89e4T2 1 + 83.9T + 6.89e4T^{2}
43 1+368.T+7.95e4T2 1 + 368.T + 7.95e4T^{2}
47 1+98.3T+1.03e5T2 1 + 98.3T + 1.03e5T^{2}
53 1293.T+1.48e5T2 1 - 293.T + 1.48e5T^{2}
59 1+509.T+2.05e5T2 1 + 509.T + 2.05e5T^{2}
61 1+696.T+2.26e5T2 1 + 696.T + 2.26e5T^{2}
67 1370.T+3.00e5T2 1 - 370.T + 3.00e5T^{2}
71 1+121.T+3.57e5T2 1 + 121.T + 3.57e5T^{2}
73 1+682.T+3.89e5T2 1 + 682.T + 3.89e5T^{2}
79 1+669.T+4.93e5T2 1 + 669.T + 4.93e5T^{2}
83 11.18e3T+5.71e5T2 1 - 1.18e3T + 5.71e5T^{2}
89 1598.T+7.04e5T2 1 - 598.T + 7.04e5T^{2}
97 1+1.03e3T+9.12e5T2 1 + 1.03e3T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.964836037699837614536600984214, −8.379467810779016070903916682481, −7.32050361856130576057944831836, −6.58773995699849637784976462132, −5.66793903535916188123278978350, −4.73078665708286700704571438026, −3.36458530371851516773485364460, −2.03878263989753877803479575372, −1.33146412243848291458767386932, 0, 1.33146412243848291458767386932, 2.03878263989753877803479575372, 3.36458530371851516773485364460, 4.73078665708286700704571438026, 5.66793903535916188123278978350, 6.58773995699849637784976462132, 7.32050361856130576057944831836, 8.379467810779016070903916682481, 8.964836037699837614536600984214

Graph of the ZZ-function along the critical line