L(s) = 1 | − 0.560·2-s − 7.68·4-s + 12.9·5-s + 8.79·8-s − 7.26·10-s − 48.2·11-s − 36.3·13-s + 56.5·16-s + 83.2·17-s + 67.4·19-s − 99.5·20-s + 27.0·22-s + 30.6·23-s + 42.8·25-s + 20.3·26-s − 294.·29-s + 270.·31-s − 102.·32-s − 46.7·34-s − 204.·37-s − 37.8·38-s + 114.·40-s + 287.·41-s − 55.4·43-s + 370.·44-s − 17.1·46-s − 191.·47-s + ⋯ |
L(s) = 1 | − 0.198·2-s − 0.960·4-s + 1.15·5-s + 0.388·8-s − 0.229·10-s − 1.32·11-s − 0.774·13-s + 0.883·16-s + 1.18·17-s + 0.814·19-s − 1.11·20-s + 0.262·22-s + 0.277·23-s + 0.342·25-s + 0.153·26-s − 1.88·29-s + 1.56·31-s − 0.564·32-s − 0.235·34-s − 0.907·37-s − 0.161·38-s + 0.450·40-s + 1.09·41-s − 0.196·43-s + 1.26·44-s − 0.0550·46-s − 0.593·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+0.560T+8T2 |
| 5 | 1−12.9T+125T2 |
| 11 | 1+48.2T+1.33e3T2 |
| 13 | 1+36.3T+2.19e3T2 |
| 17 | 1−83.2T+4.91e3T2 |
| 19 | 1−67.4T+6.85e3T2 |
| 23 | 1−30.6T+1.21e4T2 |
| 29 | 1+294.T+2.43e4T2 |
| 31 | 1−270.T+2.97e4T2 |
| 37 | 1+204.T+5.06e4T2 |
| 41 | 1−287.T+6.89e4T2 |
| 43 | 1+55.4T+7.95e4T2 |
| 47 | 1+191.T+1.03e5T2 |
| 53 | 1+521.T+1.48e5T2 |
| 59 | 1+381.T+2.05e5T2 |
| 61 | 1−155.T+2.26e5T2 |
| 67 | 1+65.1T+3.00e5T2 |
| 71 | 1−256.T+3.57e5T2 |
| 73 | 1−318.T+3.89e5T2 |
| 79 | 1−77.7T+4.93e5T2 |
| 83 | 1−836.T+5.71e5T2 |
| 89 | 1−1.59e3T+7.04e5T2 |
| 97 | 1+1.18e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.099134005325966548476607023407, −7.921615507474618230481853505224, −7.56631522414069298780923564763, −6.15713909348922837863888638722, −5.27189916909220284715486125331, −4.98638985031370177412622639434, −3.52630624393083522607441266943, −2.49788349514918925902341456587, −1.28865727498584934176123859257, 0,
1.28865727498584934176123859257, 2.49788349514918925902341456587, 3.52630624393083522607441266943, 4.98638985031370177412622639434, 5.27189916909220284715486125331, 6.15713909348922837863888638722, 7.56631522414069298780923564763, 7.921615507474618230481853505224, 9.099134005325966548476607023407