Properties

Label 2-1323-1.1-c3-0-116
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.46·2-s + 21.8·4-s + 0.199·5-s + 75.5·8-s + 1.08·10-s + 28.4·11-s + 32.5·13-s + 237.·16-s − 115.·17-s + 21.1·19-s + 4.34·20-s + 155.·22-s + 93.7·23-s − 124.·25-s + 177.·26-s + 231.·29-s + 281.·31-s + 695.·32-s − 630.·34-s − 146.·37-s + 115.·38-s + 15.0·40-s − 111.·41-s + 392.·43-s + 620.·44-s + 512.·46-s + 273.·47-s + ⋯
L(s)  = 1  + 1.93·2-s + 2.72·4-s + 0.0178·5-s + 3.33·8-s + 0.0343·10-s + 0.779·11-s + 0.695·13-s + 3.71·16-s − 1.64·17-s + 0.255·19-s + 0.0486·20-s + 1.50·22-s + 0.850·23-s − 0.999·25-s + 1.34·26-s + 1.48·29-s + 1.63·31-s + 3.84·32-s − 3.18·34-s − 0.651·37-s + 0.493·38-s + 0.0594·40-s − 0.422·41-s + 1.39·43-s + 2.12·44-s + 1.64·46-s + 0.847·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.119175778\)
\(L(\frac12)\) \(\approx\) \(9.119175778\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 5.46T + 8T^{2} \)
5 \( 1 - 0.199T + 125T^{2} \)
11 \( 1 - 28.4T + 1.33e3T^{2} \)
13 \( 1 - 32.5T + 2.19e3T^{2} \)
17 \( 1 + 115.T + 4.91e3T^{2} \)
19 \( 1 - 21.1T + 6.85e3T^{2} \)
23 \( 1 - 93.7T + 1.21e4T^{2} \)
29 \( 1 - 231.T + 2.43e4T^{2} \)
31 \( 1 - 281.T + 2.97e4T^{2} \)
37 \( 1 + 146.T + 5.06e4T^{2} \)
41 \( 1 + 111.T + 6.89e4T^{2} \)
43 \( 1 - 392.T + 7.95e4T^{2} \)
47 \( 1 - 273.T + 1.03e5T^{2} \)
53 \( 1 + 340.T + 1.48e5T^{2} \)
59 \( 1 + 696.T + 2.05e5T^{2} \)
61 \( 1 + 370.T + 2.26e5T^{2} \)
67 \( 1 - 87.1T + 3.00e5T^{2} \)
71 \( 1 + 88.3T + 3.57e5T^{2} \)
73 \( 1 + 803.T + 3.89e5T^{2} \)
79 \( 1 - 364.T + 4.93e5T^{2} \)
83 \( 1 - 921.T + 5.71e5T^{2} \)
89 \( 1 + 211.T + 7.04e5T^{2} \)
97 \( 1 - 845.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.273671400522211943743129977485, −8.248025003291125509669939959750, −7.15700987497031083896530075198, −6.44055063108547925135865393245, −5.97685460593182160109825110399, −4.74656406976674737890711139423, −4.30504271645170610062690929716, −3.30956944547911110256672801830, −2.41493247290483231253852739880, −1.27134869292084255218831776704, 1.27134869292084255218831776704, 2.41493247290483231253852739880, 3.30956944547911110256672801830, 4.30504271645170610062690929716, 4.74656406976674737890711139423, 5.97685460593182160109825110399, 6.44055063108547925135865393245, 7.15700987497031083896530075198, 8.248025003291125509669939959750, 9.273671400522211943743129977485

Graph of the $Z$-function along the critical line