L(s) = 1 | + 5.46·2-s + 21.8·4-s + 0.199·5-s + 75.5·8-s + 1.08·10-s + 28.4·11-s + 32.5·13-s + 237.·16-s − 115.·17-s + 21.1·19-s + 4.34·20-s + 155.·22-s + 93.7·23-s − 124.·25-s + 177.·26-s + 231.·29-s + 281.·31-s + 695.·32-s − 630.·34-s − 146.·37-s + 115.·38-s + 15.0·40-s − 111.·41-s + 392.·43-s + 620.·44-s + 512.·46-s + 273.·47-s + ⋯ |
L(s) = 1 | + 1.93·2-s + 2.72·4-s + 0.0178·5-s + 3.33·8-s + 0.0343·10-s + 0.779·11-s + 0.695·13-s + 3.71·16-s − 1.64·17-s + 0.255·19-s + 0.0486·20-s + 1.50·22-s + 0.850·23-s − 0.999·25-s + 1.34·26-s + 1.48·29-s + 1.63·31-s + 3.84·32-s − 3.18·34-s − 0.651·37-s + 0.493·38-s + 0.0594·40-s − 0.422·41-s + 1.39·43-s + 2.12·44-s + 1.64·46-s + 0.847·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
9.119175778 |
L(21) |
≈ |
9.119175778 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−5.46T+8T2 |
| 5 | 1−0.199T+125T2 |
| 11 | 1−28.4T+1.33e3T2 |
| 13 | 1−32.5T+2.19e3T2 |
| 17 | 1+115.T+4.91e3T2 |
| 19 | 1−21.1T+6.85e3T2 |
| 23 | 1−93.7T+1.21e4T2 |
| 29 | 1−231.T+2.43e4T2 |
| 31 | 1−281.T+2.97e4T2 |
| 37 | 1+146.T+5.06e4T2 |
| 41 | 1+111.T+6.89e4T2 |
| 43 | 1−392.T+7.95e4T2 |
| 47 | 1−273.T+1.03e5T2 |
| 53 | 1+340.T+1.48e5T2 |
| 59 | 1+696.T+2.05e5T2 |
| 61 | 1+370.T+2.26e5T2 |
| 67 | 1−87.1T+3.00e5T2 |
| 71 | 1+88.3T+3.57e5T2 |
| 73 | 1+803.T+3.89e5T2 |
| 79 | 1−364.T+4.93e5T2 |
| 83 | 1−921.T+5.71e5T2 |
| 89 | 1+211.T+7.04e5T2 |
| 97 | 1−845.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.273671400522211943743129977485, −8.248025003291125509669939959750, −7.15700987497031083896530075198, −6.44055063108547925135865393245, −5.97685460593182160109825110399, −4.74656406976674737890711139423, −4.30504271645170610062690929716, −3.30956944547911110256672801830, −2.41493247290483231253852739880, −1.27134869292084255218831776704,
1.27134869292084255218831776704, 2.41493247290483231253852739880, 3.30956944547911110256672801830, 4.30504271645170610062690929716, 4.74656406976674737890711139423, 5.97685460593182160109825110399, 6.44055063108547925135865393245, 7.15700987497031083896530075198, 8.248025003291125509669939959750, 9.273671400522211943743129977485