L(s) = 1 | − 4.70·2-s + 14.1·4-s − 0.830·5-s − 29.0·8-s + 3.90·10-s + 68.2·11-s − 35.7·13-s + 23.2·16-s − 14.6·17-s + 86.7·19-s − 11.7·20-s − 321.·22-s − 58.4·23-s − 124.·25-s + 168.·26-s + 67.1·29-s − 69.5·31-s + 122.·32-s + 69.0·34-s − 289.·37-s − 408.·38-s + 24.0·40-s + 357.·41-s − 235.·43-s + 966.·44-s + 274.·46-s − 450.·47-s + ⋯ |
L(s) = 1 | − 1.66·2-s + 1.77·4-s − 0.0742·5-s − 1.28·8-s + 0.123·10-s + 1.87·11-s − 0.763·13-s + 0.363·16-s − 0.209·17-s + 1.04·19-s − 0.131·20-s − 3.11·22-s − 0.529·23-s − 0.994·25-s + 1.27·26-s + 0.429·29-s − 0.402·31-s + 0.677·32-s + 0.348·34-s − 1.28·37-s − 1.74·38-s + 0.0952·40-s + 1.36·41-s − 0.836·43-s + 3.31·44-s + 0.881·46-s − 1.39·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+4.70T+8T2 |
| 5 | 1+0.830T+125T2 |
| 11 | 1−68.2T+1.33e3T2 |
| 13 | 1+35.7T+2.19e3T2 |
| 17 | 1+14.6T+4.91e3T2 |
| 19 | 1−86.7T+6.85e3T2 |
| 23 | 1+58.4T+1.21e4T2 |
| 29 | 1−67.1T+2.43e4T2 |
| 31 | 1+69.5T+2.97e4T2 |
| 37 | 1+289.T+5.06e4T2 |
| 41 | 1−357.T+6.89e4T2 |
| 43 | 1+235.T+7.95e4T2 |
| 47 | 1+450.T+1.03e5T2 |
| 53 | 1+172.T+1.48e5T2 |
| 59 | 1−445.T+2.05e5T2 |
| 61 | 1−476.T+2.26e5T2 |
| 67 | 1+804.T+3.00e5T2 |
| 71 | 1+353.T+3.57e5T2 |
| 73 | 1+778.T+3.89e5T2 |
| 79 | 1+74.1T+4.93e5T2 |
| 83 | 1−1.16e3T+5.71e5T2 |
| 89 | 1+1.51e3T+7.04e5T2 |
| 97 | 1−1.63e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.962134227187167938587944165383, −8.217924648099309367778758767659, −7.32786349813478456856363904421, −6.79593053980232161323010570096, −5.86396002869175492884116174523, −4.49871053815137030683181201711, −3.38065834222808802547182986241, −2.01668180266059204247380194139, −1.19670716109598163394732490012, 0,
1.19670716109598163394732490012, 2.01668180266059204247380194139, 3.38065834222808802547182986241, 4.49871053815137030683181201711, 5.86396002869175492884116174523, 6.79593053980232161323010570096, 7.32786349813478456856363904421, 8.217924648099309367778758767659, 8.962134227187167938587944165383