Properties

Label 2-1323-1.1-c1-0-14
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.46·2-s + 0.133·4-s + 0.593·5-s + 2.72·8-s − 0.866·10-s + 4.46·11-s + 4.51·13-s − 4.24·16-s + 0.273·17-s − 2.86·19-s + 0.0789·20-s − 6.51·22-s + 5.05·23-s − 4.64·25-s − 6.59·26-s + 0.352·29-s − 2.51·31-s + 0.751·32-s − 0.399·34-s − 6.64·37-s + 4.18·38-s + 1.61·40-s + 10.8·41-s + 3.38·43-s + 0.593·44-s − 7.38·46-s − 12.4·47-s + ⋯
L(s)  = 1  − 1.03·2-s + 0.0665·4-s + 0.265·5-s + 0.964·8-s − 0.274·10-s + 1.34·11-s + 1.25·13-s − 1.06·16-s + 0.0662·17-s − 0.657·19-s + 0.0176·20-s − 1.38·22-s + 1.05·23-s − 0.929·25-s − 1.29·26-s + 0.0654·29-s − 0.451·31-s + 0.132·32-s − 0.0684·34-s − 1.09·37-s + 0.679·38-s + 0.255·40-s + 1.70·41-s + 0.515·43-s + 0.0894·44-s − 1.08·46-s − 1.81·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.058680303\)
\(L(\frac12)\) \(\approx\) \(1.058680303\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 1.46T + 2T^{2} \)
5 \( 1 - 0.593T + 5T^{2} \)
11 \( 1 - 4.46T + 11T^{2} \)
13 \( 1 - 4.51T + 13T^{2} \)
17 \( 1 - 0.273T + 17T^{2} \)
19 \( 1 + 2.86T + 19T^{2} \)
23 \( 1 - 5.05T + 23T^{2} \)
29 \( 1 - 0.352T + 29T^{2} \)
31 \( 1 + 2.51T + 31T^{2} \)
37 \( 1 + 6.64T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 - 3.38T + 43T^{2} \)
47 \( 1 + 12.4T + 47T^{2} \)
53 \( 1 - 11.3T + 53T^{2} \)
59 \( 1 - 8.05T + 59T^{2} \)
61 \( 1 - 2.73T + 61T^{2} \)
67 \( 1 - 5.86T + 67T^{2} \)
71 \( 1 - 2.60T + 71T^{2} \)
73 \( 1 + 11.1T + 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 + 16.5T + 83T^{2} \)
89 \( 1 - 5.37T + 89T^{2} \)
97 \( 1 - 2.26T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.457251726913763622786642010357, −8.851823259636964720389022859657, −8.350549895640300295113138998835, −7.27386790827781380835338059794, −6.53388726348620445856529681002, −5.61088362510871379251986271949, −4.36256627475879219694345637827, −3.60221754580290317897134758412, −1.92347874271809749943724395961, −0.946329713497372231954577889354, 0.946329713497372231954577889354, 1.92347874271809749943724395961, 3.60221754580290317897134758412, 4.36256627475879219694345637827, 5.61088362510871379251986271949, 6.53388726348620445856529681002, 7.27386790827781380835338059794, 8.350549895640300295113138998835, 8.851823259636964720389022859657, 9.457251726913763622786642010357

Graph of the $Z$-function along the critical line