L(s) = 1 | + (−0.621 + 1.27i)2-s + (−1.72 + 0.121i)3-s + (−1.22 − 1.57i)4-s − 2.24i·5-s + (0.919 − 2.27i)6-s − 2i·7-s + (2.76 − 0.578i)8-s + (2.97 − 0.419i)9-s + (2.84 + 1.39i)10-s + 11-s + (2.31 + 2.57i)12-s − 5.08·13-s + (2.54 + 1.24i)14-s + (0.272 + 3.87i)15-s + (−0.985 + 3.87i)16-s − 6.91i·17-s + ⋯ |
L(s) = 1 | + (−0.439 + 0.898i)2-s + (−0.997 + 0.0700i)3-s + (−0.613 − 0.789i)4-s − 1.00i·5-s + (0.375 − 0.926i)6-s − 0.755i·7-s + (0.978 − 0.204i)8-s + (0.990 − 0.139i)9-s + (0.900 + 0.440i)10-s + 0.301·11-s + (0.667 + 0.744i)12-s − 1.40·13-s + (0.679 + 0.332i)14-s + (0.0702 + 1.00i)15-s + (−0.246 + 0.969i)16-s − 1.67i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.667 + 0.744i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.667 + 0.744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.477116 - 0.212974i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.477116 - 0.212974i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.621 - 1.27i)T \) |
| 3 | \( 1 + (1.72 - 0.121i)T \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 + 2.24iT - 5T^{2} \) |
| 7 | \( 1 + 2iT - 7T^{2} \) |
| 13 | \( 1 + 5.08T + 13T^{2} \) |
| 17 | \( 1 + 6.91iT - 17T^{2} \) |
| 19 | \( 1 + 5.08iT - 19T^{2} \) |
| 23 | \( 1 - 0.859T + 23T^{2} \) |
| 29 | \( 1 - 4iT - 29T^{2} \) |
| 31 | \( 1 - 4.24iT - 31T^{2} \) |
| 37 | \( 1 - 0.222T + 37T^{2} \) |
| 41 | \( 1 - 3.39iT - 41T^{2} \) |
| 43 | \( 1 - 1.82iT - 43T^{2} \) |
| 47 | \( 1 + 1.40T + 47T^{2} \) |
| 53 | \( 1 - 6.59iT - 53T^{2} \) |
| 59 | \( 1 - 10.7T + 59T^{2} \) |
| 61 | \( 1 + 2.31T + 61T^{2} \) |
| 67 | \( 1 + 14.5iT - 67T^{2} \) |
| 71 | \( 1 - 7.02T + 71T^{2} \) |
| 73 | \( 1 - 12.3T + 73T^{2} \) |
| 79 | \( 1 + 10.5iT - 79T^{2} \) |
| 83 | \( 1 + 9.07T + 83T^{2} \) |
| 89 | \( 1 + 2.67iT - 89T^{2} \) |
| 97 | \( 1 + 3.02T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.18241240314507409772014738252, −12.17030363089210808207760809444, −10.97454241226956449367919186444, −9.802632444266438655620081127034, −9.067961334940694458961087643212, −7.44932107878270642600550952104, −6.78701310275213628489098090070, −5.08906012046710500255675852973, −4.70774721804159287816256988926, −0.72937455160458739825495610244,
2.19003778657254760035728928516, 3.97678942186486620033630707180, 5.61017328481896379303047971566, 6.93566481144213862819255202946, 8.163943350617431261330025122024, 9.752956108550352491540444371209, 10.38760015945557794034410916711, 11.37613443237475191690268131099, 12.19301679542524664211739250010, 12.86461926921513898807933005829