L(s) = 1 | + (0.835 + 1.14i)2-s + (−1.10 + 1.33i)3-s + (−0.602 + 1.90i)4-s − 0.671i·5-s + (−2.44 − 0.140i)6-s + 2i·7-s + (−2.67 + 0.907i)8-s + (−0.569 − 2.94i)9-s + (0.766 − 0.561i)10-s + 11-s + (−1.88 − 2.90i)12-s + 4.56·13-s + (−2.28 + 1.67i)14-s + (0.897 + 0.740i)15-s + (−3.27 − 2.29i)16-s + 4.40i·17-s + ⋯ |
L(s) = 1 | + (0.591 + 0.806i)2-s + (−0.636 + 0.771i)3-s + (−0.301 + 0.953i)4-s − 0.300i·5-s + (−0.998 − 0.0574i)6-s + 0.755i·7-s + (−0.947 + 0.320i)8-s + (−0.189 − 0.981i)9-s + (0.242 − 0.177i)10-s + 0.301·11-s + (−0.543 − 0.839i)12-s + 1.26·13-s + (−0.609 + 0.446i)14-s + (0.231 + 0.191i)15-s + (−0.818 − 0.574i)16-s + 1.06i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.543 - 0.839i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.543 - 0.839i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.552382 + 1.01614i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.552382 + 1.01614i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.835 - 1.14i)T \) |
| 3 | \( 1 + (1.10 - 1.33i)T \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 + 0.671iT - 5T^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 13 | \( 1 - 4.56T + 13T^{2} \) |
| 17 | \( 1 - 4.40iT - 17T^{2} \) |
| 19 | \( 1 + 4.56iT - 19T^{2} \) |
| 23 | \( 1 - 3.42T + 23T^{2} \) |
| 29 | \( 1 + 4iT - 29T^{2} \) |
| 31 | \( 1 + 1.32iT - 31T^{2} \) |
| 37 | \( 1 + 11.9T + 37T^{2} \) |
| 41 | \( 1 - 4.93iT - 41T^{2} \) |
| 43 | \( 1 + 8.97iT - 43T^{2} \) |
| 47 | \( 1 + 5.21T + 47T^{2} \) |
| 53 | \( 1 + 2.78iT - 53T^{2} \) |
| 59 | \( 1 + 7.33T + 59T^{2} \) |
| 61 | \( 1 + 3.62T + 61T^{2} \) |
| 67 | \( 1 - 0.803iT - 67T^{2} \) |
| 71 | \( 1 + 9.70T + 71T^{2} \) |
| 73 | \( 1 - 1.47T + 73T^{2} \) |
| 79 | \( 1 + 5.37iT - 79T^{2} \) |
| 83 | \( 1 - 12.7T + 83T^{2} \) |
| 89 | \( 1 - 15.2iT - 89T^{2} \) |
| 97 | \( 1 - 1.54T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.65314484815518729855593238040, −12.64888166198612316093924787300, −11.74687529980412671415348050978, −10.73222750621451914148811438554, −9.093242679753065309006389888750, −8.549820025875027462655367514166, −6.70674954707188405974645750663, −5.80097578533273290063758184148, −4.75934059740872893377323416231, −3.47974066924934622290887451391,
1.32094172064530062817605381214, 3.34203064897544385928719067550, 4.92745028176627226655108190589, 6.21255115909336873362516737736, 7.19099907600499454840524862914, 8.829900400820050061609273200919, 10.40261153254389281662844949383, 10.98607539119617025720178456317, 11.94044190863878440654070604092, 12.87404330574674968663624876760