L(s) = 1 | − 1.41i·2-s + (−1 + 1.41i)3-s − 2.00·4-s − 2.82i·5-s + (2.00 + 1.41i)6-s − 4.24i·7-s + 2.82i·8-s + (−1.00 − 2.82i)9-s − 4.00·10-s − 11-s + (2.00 − 2.82i)12-s + 2·13-s − 6·14-s + (4.00 + 2.82i)15-s + 4.00·16-s + 1.41i·17-s + ⋯ |
L(s) = 1 | − 0.999i·2-s + (−0.577 + 0.816i)3-s − 1.00·4-s − 1.26i·5-s + (0.816 + 0.577i)6-s − 1.60i·7-s + 1.00i·8-s + (−0.333 − 0.942i)9-s − 1.26·10-s − 0.301·11-s + (0.577 − 0.816i)12-s + 0.554·13-s − 1.60·14-s + (1.03 + 0.730i)15-s + 1.00·16-s + 0.342i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.348582 - 0.673409i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.348582 - 0.673409i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 1.41iT \) |
| 3 | \( 1 + (1 - 1.41i)T \) |
| 11 | \( 1 + T \) |
good | 5 | \( 1 + 2.82iT - 5T^{2} \) |
| 7 | \( 1 + 4.24iT - 7T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 - 1.41iT - 17T^{2} \) |
| 19 | \( 1 - 4.24iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 1.41iT - 29T^{2} \) |
| 31 | \( 1 + 8.48iT - 31T^{2} \) |
| 37 | \( 1 - 8T + 37T^{2} \) |
| 41 | \( 1 - 1.41iT - 41T^{2} \) |
| 43 | \( 1 + 4.24iT - 43T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 - 5.65iT - 53T^{2} \) |
| 59 | \( 1 - 12T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 - 8.48iT - 67T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 2T + 73T^{2} \) |
| 79 | \( 1 + 4.24iT - 79T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 + 11.3iT - 89T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.84962431339103424117195072052, −11.78575737564025760865233305256, −10.76964692868348381413460559278, −10.08109787471044109758193579791, −9.084669387968693042230345945222, −7.911563722714694533301076064802, −5.78102983663802657244753705477, −4.49553537580106863121085449071, −3.84020730261094744531162129257, −0.920927979099957066703298060197,
2.75912214925917698388358164521, 5.16416956866915692204073770275, 6.16415078936256485591237541466, 6.90914133448345252975866874203, 8.069472940478806801029120282064, 9.165220232686028115997616358810, 10.66814135977600951713538780105, 11.70820285436315356789457690899, 12.75569804133578967129180667184, 13.73427918347347374462621800659