Properties

Label 2-130536-1.1-c1-0-35
Degree $2$
Conductor $130536$
Sign $-1$
Analytic cond. $1042.33$
Root an. cond. $32.2852$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 4·11-s − 4·13-s − 6·17-s + 7·19-s − 2·23-s + 4·25-s − 6·29-s − 2·31-s − 37-s + 11·41-s − 8·43-s − 4·47-s + 3·53-s − 12·55-s + 12·59-s + 2·61-s + 12·65-s + 3·67-s − 11·71-s − 4·73-s − 12·79-s + 9·83-s + 18·85-s − 4·89-s − 21·95-s + 3·97-s + ⋯
L(s)  = 1  − 1.34·5-s + 1.20·11-s − 1.10·13-s − 1.45·17-s + 1.60·19-s − 0.417·23-s + 4/5·25-s − 1.11·29-s − 0.359·31-s − 0.164·37-s + 1.71·41-s − 1.21·43-s − 0.583·47-s + 0.412·53-s − 1.61·55-s + 1.56·59-s + 0.256·61-s + 1.48·65-s + 0.366·67-s − 1.30·71-s − 0.468·73-s − 1.35·79-s + 0.987·83-s + 1.95·85-s − 0.423·89-s − 2.15·95-s + 0.304·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130536\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(1042.33\)
Root analytic conductor: \(32.2852\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 130536,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 11 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 + 11 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.75135784877808, −13.09518030527665, −12.81086513391278, −11.97307333918390, −11.87405054773569, −11.34174715883585, −11.18005020639437, −10.29866814525267, −9.774582901327339, −9.327394779815737, −8.846421387559491, −8.378868107731046, −7.661017739707491, −7.314293516657816, −7.026080798535479, −6.357727281008637, −5.707801832957048, −5.053055476358912, −4.537776971498463, −3.983633776260169, −3.652494155256093, −2.964469935593893, −2.251175827125831, −1.557370409341549, −0.6843540479870546, 0, 0.6843540479870546, 1.557370409341549, 2.251175827125831, 2.964469935593893, 3.652494155256093, 3.983633776260169, 4.537776971498463, 5.053055476358912, 5.707801832957048, 6.357727281008637, 7.026080798535479, 7.314293516657816, 7.661017739707491, 8.378868107731046, 8.846421387559491, 9.327394779815737, 9.774582901327339, 10.29866814525267, 11.18005020639437, 11.34174715883585, 11.87405054773569, 11.97307333918390, 12.81086513391278, 13.09518030527665, 13.75135784877808

Graph of the $Z$-function along the critical line