Properties

Label 2-130536-1.1-c1-0-24
Degree $2$
Conductor $130536$
Sign $-1$
Analytic cond. $1042.33$
Root an. cond. $32.2852$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 4·11-s + 4·13-s − 4·17-s + 2·19-s − 8·23-s + 11·25-s + 6·29-s − 2·31-s − 37-s − 6·41-s − 8·43-s + 12·47-s − 2·53-s + 16·55-s + 10·59-s − 16·65-s + 12·67-s − 16·71-s + 6·73-s − 8·79-s + 4·83-s + 16·85-s − 12·89-s − 8·95-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.20·11-s + 1.10·13-s − 0.970·17-s + 0.458·19-s − 1.66·23-s + 11/5·25-s + 1.11·29-s − 0.359·31-s − 0.164·37-s − 0.937·41-s − 1.21·43-s + 1.75·47-s − 0.274·53-s + 2.15·55-s + 1.30·59-s − 1.98·65-s + 1.46·67-s − 1.89·71-s + 0.702·73-s − 0.900·79-s + 0.439·83-s + 1.73·85-s − 1.27·89-s − 0.820·95-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130536\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(1042.33\)
Root analytic conductor: \(32.2852\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 130536,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.84887128915909, −13.07918599875328, −12.84074630429096, −12.10393353512696, −11.81107845595080, −11.38612269266234, −10.91342641536980, −10.35178300268955, −10.12228105193203, −9.203603583391778, −8.549301081810653, −8.325375164780188, −7.988103112559492, −7.339329405918669, −6.932801880905715, −6.351284666531904, −5.680271860606208, −5.087225527041772, −4.532413924298498, −3.938321196196939, −3.664059901567652, −2.939130792719609, −2.381615559749524, −1.496959808308993, −0.6012947820706901, 0, 0.6012947820706901, 1.496959808308993, 2.381615559749524, 2.939130792719609, 3.664059901567652, 3.938321196196939, 4.532413924298498, 5.087225527041772, 5.680271860606208, 6.351284666531904, 6.932801880905715, 7.339329405918669, 7.988103112559492, 8.325375164780188, 8.549301081810653, 9.203603583391778, 10.12228105193203, 10.35178300268955, 10.91342641536980, 11.38612269266234, 11.81107845595080, 12.10393353512696, 12.84074630429096, 13.07918599875328, 13.84887128915909

Graph of the $Z$-function along the critical line