L(s) = 1 | − i·2-s + 4-s + (−1 + 2i)5-s − 2i·7-s − 3i·8-s + (2 + i)10-s − 4i·13-s − 2·14-s − 16-s − 2i·17-s + (−1 + 2i)20-s + 2i·23-s + (−3 − 4i)25-s − 4·26-s − 2i·28-s + 29-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.5·4-s + (−0.447 + 0.894i)5-s − 0.755i·7-s − 1.06i·8-s + (0.632 + 0.316i)10-s − 1.10i·13-s − 0.534·14-s − 0.250·16-s − 0.485i·17-s + (−0.223 + 0.447i)20-s + 0.417i·23-s + (−0.600 − 0.800i)25-s − 0.784·26-s − 0.377i·28-s + 0.185·29-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(1305s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1305
= 32⋅5⋅29
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
10.4204 |
Root analytic conductor: |
3.22807 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1305(784,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1305, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.592519615 |
L(21) |
≈ |
1.592519615 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(1−2i)T |
| 29 | 1−T |
good | 2 | 1+iT−2T2 |
| 7 | 1+2iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1+2iT−17T2 |
| 19 | 1+19T2 |
| 23 | 1−2iT−23T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+10T+41T2 |
| 43 | 1−43T2 |
| 47 | 1+12iT−47T2 |
| 53 | 1+12iT−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1−2iT−67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1+14iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1+6iT−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00505846949518651350295593141, −8.485499092341623796456950824390, −7.60242132995005891459753887582, −7.00451176912474970652342581349, −6.28641752581960476903018400151, −5.03942382321404709281914026419, −3.71728796090219176312261600033, −3.23711203771078452186518527739, −2.17323644387502277931074269001, −0.65504233145492505097997711043,
1.55265502428620737703863827011, 2.67440266786593693114220106013, 4.10809068241645342297028270241, 4.98732694313822228938769051418, 5.84487695249309432141090844679, 6.59130344346890757875140372092, 7.46510970093759013940925842897, 8.358543160738460753766710413005, 8.773355966290434546116607870882, 9.673208401878116675694158808760