Properties

Label 2-1305-5.4-c1-0-50
Degree $2$
Conductor $1305$
Sign $-0.447 + 0.894i$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + 4-s + (−1 + 2i)5-s − 2i·7-s − 3i·8-s + (2 + i)10-s − 4i·13-s − 2·14-s − 16-s − 2i·17-s + (−1 + 2i)20-s + 2i·23-s + (−3 − 4i)25-s − 4·26-s − 2i·28-s + 29-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.5·4-s + (−0.447 + 0.894i)5-s − 0.755i·7-s − 1.06i·8-s + (0.632 + 0.316i)10-s − 1.10i·13-s − 0.534·14-s − 0.250·16-s − 0.485i·17-s + (−0.223 + 0.447i)20-s + 0.417i·23-s + (−0.600 − 0.800i)25-s − 0.784·26-s − 0.377i·28-s + 0.185·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1305} (784, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.592519615\)
\(L(\frac12)\) \(\approx\) \(1.592519615\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (1 - 2i)T \)
29 \( 1 - T \)
good2 \( 1 + iT - 2T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 + 2iT - 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 12iT - 47T^{2} \)
53 \( 1 + 12iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 2iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 14iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 + 6iT - 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00505846949518651350295593141, −8.485499092341623796456950824390, −7.60242132995005891459753887582, −7.00451176912474970652342581349, −6.28641752581960476903018400151, −5.03942382321404709281914026419, −3.71728796090219176312261600033, −3.23711203771078452186518527739, −2.17323644387502277931074269001, −0.65504233145492505097997711043, 1.55265502428620737703863827011, 2.67440266786593693114220106013, 4.10809068241645342297028270241, 4.98732694313822228938769051418, 5.84487695249309432141090844679, 6.59130344346890757875140372092, 7.46510970093759013940925842897, 8.358543160738460753766710413005, 8.773355966290434546116607870882, 9.673208401878116675694158808760

Graph of the $Z$-function along the critical line