L(s) = 1 | + 2·2-s + 2·4-s + (−2 + i)5-s − 4i·7-s + (−4 + 2i)10-s + i·11-s − 2i·13-s − 8i·14-s − 4·16-s + 6·17-s − 4i·19-s + (−4 + 2i)20-s + 2i·22-s − 9i·23-s + (3 − 4i)25-s − 4i·26-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + (−0.894 + 0.447i)5-s − 1.51i·7-s + (−1.26 + 0.632i)10-s + 0.301i·11-s − 0.554i·13-s − 2.13i·14-s − 16-s + 1.45·17-s − 0.917i·19-s + (−0.894 + 0.447i)20-s + 0.426i·22-s − 1.87i·23-s + (0.600 − 0.800i)25-s − 0.784i·26-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)(0.0830+0.996i)Λ(2−s)
Λ(s)=(=(1305s/2ΓC(s+1/2)L(s)(0.0830+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
1305
= 32⋅5⋅29
|
Sign: |
0.0830+0.996i
|
Analytic conductor: |
10.4204 |
Root analytic conductor: |
3.22807 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1305(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1305, ( :1/2), 0.0830+0.996i)
|
Particular Values
L(1) |
≈ |
2.453481913 |
L(21) |
≈ |
2.453481913 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(2−i)T |
| 29 | 1+(−2+5i)T |
good | 2 | 1−2T+2T2 |
| 7 | 1+4iT−7T2 |
| 11 | 1−iT−11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−6T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1+9iT−23T2 |
| 31 | 1+2iT−31T2 |
| 37 | 1+T+37T2 |
| 41 | 1−9iT−41T2 |
| 43 | 1+T+43T2 |
| 47 | 1+8T+47T2 |
| 53 | 1−9iT−53T2 |
| 59 | 1+8T+59T2 |
| 61 | 1+6iT−61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1+2T+71T2 |
| 73 | 1−15T+73T2 |
| 79 | 1−4iT−79T2 |
| 83 | 1+7iT−83T2 |
| 89 | 1+2iT−89T2 |
| 97 | 1−11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.738429152327209098155837035283, −8.302843257897433570293909223490, −7.60973984109287156553467338298, −6.83579944325227858511132406863, −6.14885502234064744496038314249, −4.80012059859727431091523076309, −4.37797694144427953366951522619, −3.47663691456538662284798495539, −2.76150253355720034799778383644, −0.64223607711012492924852643119,
1.77088019764797899931344369182, 3.28478753548417363019912845808, 3.59254007917073859749384693798, 4.95488288955330625006751518500, 5.40613569696574780957360186736, 6.13340633299569553057515089107, 7.27300529849285495151592315098, 8.207370617276444456773597116117, 8.950893201578666372078248978392, 9.705241165562487214321846287697