L(s) = 1 | + 2·2-s + 2·4-s + (−2 + i)5-s − 4i·7-s + (−4 + 2i)10-s + i·11-s − 2i·13-s − 8i·14-s − 4·16-s + 6·17-s − 4i·19-s + (−4 + 2i)20-s + 2i·22-s − 9i·23-s + (3 − 4i)25-s − 4i·26-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + (−0.894 + 0.447i)5-s − 1.51i·7-s + (−1.26 + 0.632i)10-s + 0.301i·11-s − 0.554i·13-s − 2.13i·14-s − 16-s + 1.45·17-s − 0.917i·19-s + (−0.894 + 0.447i)20-s + 0.426i·22-s − 1.87i·23-s + (0.600 − 0.800i)25-s − 0.784i·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0830 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0830 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.453481913\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.453481913\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2 - i)T \) |
| 29 | \( 1 + (-2 + 5i)T \) |
good | 2 | \( 1 - 2T + 2T^{2} \) |
| 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 - iT - 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 - 6T + 17T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + 9iT - 23T^{2} \) |
| 31 | \( 1 + 2iT - 31T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 - 9iT - 41T^{2} \) |
| 43 | \( 1 + T + 43T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 - 9iT - 53T^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 + 6iT - 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 - 15T + 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 + 7iT - 83T^{2} \) |
| 89 | \( 1 + 2iT - 89T^{2} \) |
| 97 | \( 1 - 11T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.738429152327209098155837035283, −8.302843257897433570293909223490, −7.60973984109287156553467338298, −6.83579944325227858511132406863, −6.14885502234064744496038314249, −4.80012059859727431091523076309, −4.37797694144427953366951522619, −3.47663691456538662284798495539, −2.76150253355720034799778383644, −0.64223607711012492924852643119,
1.77088019764797899931344369182, 3.28478753548417363019912845808, 3.59254007917073859749384693798, 4.95488288955330625006751518500, 5.40613569696574780957360186736, 6.13340633299569553057515089107, 7.27300529849285495151592315098, 8.207370617276444456773597116117, 8.950893201578666372078248978392, 9.705241165562487214321846287697