L(s) = 1 | + 2-s − 4-s + (1 + 2i)5-s − 2i·7-s − 3·8-s + (1 + 2i)10-s − 2i·11-s − 4i·13-s − 2i·14-s − 16-s + 6·17-s + 2i·19-s + (−1 − 2i)20-s − 2i·22-s − 6i·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.5·4-s + (0.447 + 0.894i)5-s − 0.755i·7-s − 1.06·8-s + (0.316 + 0.632i)10-s − 0.603i·11-s − 1.10i·13-s − 0.534i·14-s − 0.250·16-s + 1.45·17-s + 0.458i·19-s + (−0.223 − 0.447i)20-s − 0.426i·22-s − 1.25i·23-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)(0.747+0.664i)Λ(2−s)
Λ(s)=(=(1305s/2ΓC(s+1/2)L(s)(0.747+0.664i)Λ(1−s)
Degree: |
2 |
Conductor: |
1305
= 32⋅5⋅29
|
Sign: |
0.747+0.664i
|
Analytic conductor: |
10.4204 |
Root analytic conductor: |
3.22807 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1305(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1305, ( :1/2), 0.747+0.664i)
|
Particular Values
L(1) |
≈ |
2.009973408 |
L(21) |
≈ |
2.009973408 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−1−2i)T |
| 29 | 1+(−5+2i)T |
good | 2 | 1−T+2T2 |
| 7 | 1+2iT−7T2 |
| 11 | 1+2iT−11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1−6T+17T2 |
| 19 | 1−2iT−19T2 |
| 23 | 1+6iT−23T2 |
| 31 | 1+2iT−31T2 |
| 37 | 1+2T+37T2 |
| 41 | 1−41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1−8T+47T2 |
| 53 | 1+12iT−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1−12iT−61T2 |
| 67 | 1+6iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1+2iT−79T2 |
| 83 | 1+2iT−83T2 |
| 89 | 1−16iT−89T2 |
| 97 | 1+14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.902337301472496733139408104652, −8.646963565966983029106201930584, −7.913312280305588642713215425180, −6.97665694776657729129051438115, −5.92760230442639695388624479270, −5.53423337621511941801479793110, −4.29625288946228132058118414308, −3.43042467485259959085456193143, −2.72835092344031485649477893492, −0.76393714206530891578627559963,
1.32689956029820022363625464688, 2.66129910792525779657171666232, 3.88548757733506825570768597457, 4.74299492762490571545970974386, 5.42650341598614599145451380584, 6.03944081049483700045557467413, 7.22676304236838813091087026639, 8.311602364099174959841546770019, 9.166898453577486070199159032513, 9.402095747839409739074834278817