L(s) = 1 | + 2.57·2-s − 1.37·4-s + 5·5-s + 31.5·7-s − 24.1·8-s + 12.8·10-s − 64.9·11-s + 26.2·13-s + 81.1·14-s − 51.0·16-s + 31.1·17-s − 75.4·19-s − 6.88·20-s − 167.·22-s + 207.·23-s + 25·25-s + 67.6·26-s − 43.4·28-s − 29·29-s + 269.·31-s + 61.5·32-s + 80.1·34-s + 157.·35-s + 254.·37-s − 194.·38-s − 120.·40-s − 65.6·41-s + ⋯ |
L(s) = 1 | + 0.909·2-s − 0.172·4-s + 0.447·5-s + 1.70·7-s − 1.06·8-s + 0.406·10-s − 1.77·11-s + 0.560·13-s + 1.54·14-s − 0.798·16-s + 0.444·17-s − 0.910·19-s − 0.0769·20-s − 1.61·22-s + 1.88·23-s + 0.200·25-s + 0.510·26-s − 0.293·28-s − 0.185·29-s + 1.56·31-s + 0.340·32-s + 0.404·34-s + 0.761·35-s + 1.13·37-s − 0.828·38-s − 0.476·40-s − 0.250·41-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1305s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.696237504 |
L(21) |
≈ |
3.696237504 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−5T |
| 29 | 1+29T |
good | 2 | 1−2.57T+8T2 |
| 7 | 1−31.5T+343T2 |
| 11 | 1+64.9T+1.33e3T2 |
| 13 | 1−26.2T+2.19e3T2 |
| 17 | 1−31.1T+4.91e3T2 |
| 19 | 1+75.4T+6.85e3T2 |
| 23 | 1−207.T+1.21e4T2 |
| 31 | 1−269.T+2.97e4T2 |
| 37 | 1−254.T+5.06e4T2 |
| 41 | 1+65.6T+6.89e4T2 |
| 43 | 1−28.4T+7.95e4T2 |
| 47 | 1+489.T+1.03e5T2 |
| 53 | 1−426.T+1.48e5T2 |
| 59 | 1+424.T+2.05e5T2 |
| 61 | 1+256.T+2.26e5T2 |
| 67 | 1−233.T+3.00e5T2 |
| 71 | 1−1.15e3T+3.57e5T2 |
| 73 | 1+243.T+3.89e5T2 |
| 79 | 1−875.T+4.93e5T2 |
| 83 | 1−102.T+5.71e5T2 |
| 89 | 1−481.T+7.04e5T2 |
| 97 | 1+760.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.158678097131981669530840095442, −8.291510429467101266873622760336, −7.87604468143608413348385484002, −6.56837110283297938339529639550, −5.55924020381539532435242672893, −4.98370350037198139186335636093, −4.48836606616365249344251319079, −3.11957154074524617611821767225, −2.23571143552221040748030346376, −0.865463109453529623537002492798,
0.865463109453529623537002492798, 2.23571143552221040748030346376, 3.11957154074524617611821767225, 4.48836606616365249344251319079, 4.98370350037198139186335636093, 5.55924020381539532435242672893, 6.56837110283297938339529639550, 7.87604468143608413348385484002, 8.291510429467101266873622760336, 9.158678097131981669530840095442