Properties

Label 2-1305-1.1-c3-0-53
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.57·2-s − 1.37·4-s + 5·5-s + 31.5·7-s − 24.1·8-s + 12.8·10-s − 64.9·11-s + 26.2·13-s + 81.1·14-s − 51.0·16-s + 31.1·17-s − 75.4·19-s − 6.88·20-s − 167.·22-s + 207.·23-s + 25·25-s + 67.6·26-s − 43.4·28-s − 29·29-s + 269.·31-s + 61.5·32-s + 80.1·34-s + 157.·35-s + 254.·37-s − 194.·38-s − 120.·40-s − 65.6·41-s + ⋯
L(s)  = 1  + 0.909·2-s − 0.172·4-s + 0.447·5-s + 1.70·7-s − 1.06·8-s + 0.406·10-s − 1.77·11-s + 0.560·13-s + 1.54·14-s − 0.798·16-s + 0.444·17-s − 0.910·19-s − 0.0769·20-s − 1.61·22-s + 1.88·23-s + 0.200·25-s + 0.510·26-s − 0.293·28-s − 0.185·29-s + 1.56·31-s + 0.340·32-s + 0.404·34-s + 0.761·35-s + 1.13·37-s − 0.828·38-s − 0.476·40-s − 0.250·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.696237504\)
\(L(\frac12)\) \(\approx\) \(3.696237504\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
29 \( 1 + 29T \)
good2 \( 1 - 2.57T + 8T^{2} \)
7 \( 1 - 31.5T + 343T^{2} \)
11 \( 1 + 64.9T + 1.33e3T^{2} \)
13 \( 1 - 26.2T + 2.19e3T^{2} \)
17 \( 1 - 31.1T + 4.91e3T^{2} \)
19 \( 1 + 75.4T + 6.85e3T^{2} \)
23 \( 1 - 207.T + 1.21e4T^{2} \)
31 \( 1 - 269.T + 2.97e4T^{2} \)
37 \( 1 - 254.T + 5.06e4T^{2} \)
41 \( 1 + 65.6T + 6.89e4T^{2} \)
43 \( 1 - 28.4T + 7.95e4T^{2} \)
47 \( 1 + 489.T + 1.03e5T^{2} \)
53 \( 1 - 426.T + 1.48e5T^{2} \)
59 \( 1 + 424.T + 2.05e5T^{2} \)
61 \( 1 + 256.T + 2.26e5T^{2} \)
67 \( 1 - 233.T + 3.00e5T^{2} \)
71 \( 1 - 1.15e3T + 3.57e5T^{2} \)
73 \( 1 + 243.T + 3.89e5T^{2} \)
79 \( 1 - 875.T + 4.93e5T^{2} \)
83 \( 1 - 102.T + 5.71e5T^{2} \)
89 \( 1 - 481.T + 7.04e5T^{2} \)
97 \( 1 + 760.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.158678097131981669530840095442, −8.291510429467101266873622760336, −7.87604468143608413348385484002, −6.56837110283297938339529639550, −5.55924020381539532435242672893, −4.98370350037198139186335636093, −4.48836606616365249344251319079, −3.11957154074524617611821767225, −2.23571143552221040748030346376, −0.865463109453529623537002492798, 0.865463109453529623537002492798, 2.23571143552221040748030346376, 3.11957154074524617611821767225, 4.48836606616365249344251319079, 4.98370350037198139186335636093, 5.55924020381539532435242672893, 6.56837110283297938339529639550, 7.87604468143608413348385484002, 8.291510429467101266873622760336, 9.158678097131981669530840095442

Graph of the $Z$-function along the critical line