Properties

Label 2-1305-1.1-c1-0-15
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·2-s + 3.00·4-s + 5-s + 2·7-s − 2.23·8-s − 2.23·10-s + 2·11-s + 2·13-s − 4.47·14-s − 0.999·16-s + 4.47·17-s + 2·19-s + 3.00·20-s − 4.47·22-s + 2·23-s + 25-s − 4.47·26-s + 6.00·28-s + 29-s − 2·31-s + 6.70·32-s − 10.0·34-s + 2·35-s − 0.472·37-s − 4.47·38-s − 2.23·40-s − 2·41-s + ⋯
L(s)  = 1  − 1.58·2-s + 1.50·4-s + 0.447·5-s + 0.755·7-s − 0.790·8-s − 0.707·10-s + 0.603·11-s + 0.554·13-s − 1.19·14-s − 0.249·16-s + 1.08·17-s + 0.458·19-s + 0.670·20-s − 0.953·22-s + 0.417·23-s + 0.200·25-s − 0.877·26-s + 1.13·28-s + 0.185·29-s − 0.359·31-s + 1.18·32-s − 1.71·34-s + 0.338·35-s − 0.0776·37-s − 0.725·38-s − 0.353·40-s − 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.029920863\)
\(L(\frac12)\) \(\approx\) \(1.029920863\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good2 \( 1 + 2.23T + 2T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 4.47T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + 0.472T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 4.94T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 8T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 + 14.9T + 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 - 12.4T + 73T^{2} \)
79 \( 1 - 14.9T + 79T^{2} \)
83 \( 1 + 2.94T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 - 9.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.385445675641213343479916247367, −9.045744038333210674578775402860, −8.072025987745776821115894533478, −7.55837890506713340163497813183, −6.60996500575213862476131281066, −5.70256981899790712092527893901, −4.59323310609596032035838359014, −3.20019221173085395800896109132, −1.81905966326364169270266977095, −1.03856991848935171518904010290, 1.03856991848935171518904010290, 1.81905966326364169270266977095, 3.20019221173085395800896109132, 4.59323310609596032035838359014, 5.70256981899790712092527893901, 6.60996500575213862476131281066, 7.55837890506713340163497813183, 8.072025987745776821115894533478, 9.045744038333210674578775402860, 9.385445675641213343479916247367

Graph of the $Z$-function along the critical line