Properties

Label 2-1305-1.1-c1-0-14
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 5-s − 2·7-s − 3·8-s + 10-s + 6·11-s + 2·13-s − 2·14-s − 16-s + 2·17-s − 2·19-s − 20-s + 6·22-s − 2·23-s + 25-s + 2·26-s + 2·28-s + 29-s + 2·31-s + 5·32-s + 2·34-s − 2·35-s + 10·37-s − 2·38-s − 3·40-s − 2·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.447·5-s − 0.755·7-s − 1.06·8-s + 0.316·10-s + 1.80·11-s + 0.554·13-s − 0.534·14-s − 1/4·16-s + 0.485·17-s − 0.458·19-s − 0.223·20-s + 1.27·22-s − 0.417·23-s + 1/5·25-s + 0.392·26-s + 0.377·28-s + 0.185·29-s + 0.359·31-s + 0.883·32-s + 0.342·34-s − 0.338·35-s + 1.64·37-s − 0.324·38-s − 0.474·40-s − 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.161933803\)
\(L(\frac12)\) \(\approx\) \(2.161933803\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.434356705021073856115254027826, −9.110855043614979188265787189711, −8.167158716049227693310970923226, −6.80875958973149432202684361265, −6.19042455071343211174006592245, −5.58777262856420392867756836576, −4.24191961212745454512819522376, −3.83216861154672491345510425928, −2.68651904520574431028594000101, −1.03452833414561398442010937116, 1.03452833414561398442010937116, 2.68651904520574431028594000101, 3.83216861154672491345510425928, 4.24191961212745454512819522376, 5.58777262856420392867756836576, 6.19042455071343211174006592245, 6.80875958973149432202684361265, 8.167158716049227693310970923226, 9.110855043614979188265787189711, 9.434356705021073856115254027826

Graph of the $Z$-function along the critical line