L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.309 − 0.951i)5-s + (−0.309 + 0.951i)8-s + (0.809 − 0.587i)9-s + (0.809 − 0.587i)10-s + (−0.809 − 0.587i)13-s + (−0.809 + 0.587i)16-s + (1.11 + 0.363i)17-s + 18-s + 20-s + (−0.809 − 0.587i)25-s + (−0.309 − 0.951i)26-s + (0.5 + 1.53i)29-s − 32-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.309 − 0.951i)5-s + (−0.309 + 0.951i)8-s + (0.809 − 0.587i)9-s + (0.809 − 0.587i)10-s + (−0.809 − 0.587i)13-s + (−0.809 + 0.587i)16-s + (1.11 + 0.363i)17-s + 18-s + 20-s + (−0.809 − 0.587i)25-s + (−0.309 − 0.951i)26-s + (0.5 + 1.53i)29-s − 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.790421094\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.790421094\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 13 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-1.11 - 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (1.11 + 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (1.80 - 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.872396290749837580804657018672, −8.927772236197571003558152687121, −8.206556341923945529503545202196, −7.32635018122234770411954621216, −6.60507829949639870985158534854, −5.48338217199191172364336052898, −5.04737195388509812474018239632, −4.02274640985583990502053933316, −3.09617288005201587909402820999, −1.56100148856249326080737018526,
1.72492685825827688896841110592, 2.62239382316628216093577842622, 3.62417435187499690843348748564, 4.63121880377543023509445274656, 5.43817507661809815025805033895, 6.45388441945623399627814550131, 7.11771675487351229396692243274, 7.925130732869435691170053980334, 9.516378359738968531118578904220, 9.928439649682449476173985238708