| L(s) = 1 | + (−1.73 − i)2-s + (−5.30 − 3.05i)3-s + (1.99 + 3.46i)4-s + (6.73 − 8.92i)5-s + (6.11 + 10.6i)6-s + (12.2 − 7.04i)7-s − 7.99i·8-s + (5.22 + 9.05i)9-s + (−20.5 + 8.72i)10-s + (15.1 − 26.2i)11-s − 24.4i·12-s + (46.7 − 3.74i)13-s − 28.1·14-s + (−62.9 + 26.7i)15-s + (−8 + 13.8i)16-s + (−102. + 59.2i)17-s + ⋯ |
| L(s) = 1 | + (−0.612 − 0.353i)2-s + (−1.01 − 0.588i)3-s + (0.249 + 0.433i)4-s + (0.602 − 0.798i)5-s + (0.416 + 0.721i)6-s + (0.658 − 0.380i)7-s − 0.353i·8-s + (0.193 + 0.335i)9-s + (−0.651 + 0.275i)10-s + (0.415 − 0.718i)11-s − 0.588i·12-s + (0.996 − 0.0799i)13-s − 0.537·14-s + (−1.08 + 0.459i)15-s + (−0.125 + 0.216i)16-s + (−1.46 + 0.845i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 + 0.211i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.0799766 - 0.749155i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0799766 - 0.749155i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.73 + i)T \) |
| 5 | \( 1 + (-6.73 + 8.92i)T \) |
| 13 | \( 1 + (-46.7 + 3.74i)T \) |
| good | 3 | \( 1 + (5.30 + 3.05i)T + (13.5 + 23.3i)T^{2} \) |
| 7 | \( 1 + (-12.2 + 7.04i)T + (171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-15.1 + 26.2i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 17 | \( 1 + (102. - 59.2i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (42.4 + 73.5i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (136. + 78.8i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (78.2 - 135. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 - 117.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (10.5 + 6.06i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (-177. + 306. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-46.2 + 26.6i)T + (3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 371. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 548. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + (213. + 369. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (136. + 236. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-348. - 201. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (251. + 436. i)T + (-1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 - 780. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 4.34T + 4.93e5T^{2} \) |
| 83 | \( 1 + 405. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (596. - 1.03e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (-1.40e3 + 811. i)T + (4.56e5 - 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.25922830277048284512371971452, −11.15154368782721211537788085575, −10.68289685909845818745009123524, −9.003618566912448255423304762987, −8.353320479465355453775438673900, −6.68783616356518613234134078088, −5.85872634487772685239782123713, −4.28069283827429377127209186468, −1.76122166765023486141605830337, −0.53712411396607271063197487335,
1.99211748665623848394291773543, 4.42107550205924482679295896365, 5.80683654644389678286004817633, 6.50477582397910815089373269993, 7.969596901017426921403612966847, 9.358299648338458820646573816405, 10.22750493650276393479566787345, 11.19602672621273339682842653118, 11.70081226662757084660028626504, 13.48233236570253983985606587598