| L(s) = 1 | + (1.73 − i)2-s + (5.30 − 3.05i)3-s + (1.99 − 3.46i)4-s + (6.73 − 8.92i)5-s + (6.11 − 10.6i)6-s + (−12.2 − 7.04i)7-s − 7.99i·8-s + (5.22 − 9.05i)9-s + (2.73 − 22.1i)10-s + (15.1 + 26.2i)11-s − 24.4i·12-s + (−46.7 − 3.74i)13-s − 28.1·14-s + (8.37 − 67.9i)15-s + (−8 − 13.8i)16-s + (102. + 59.2i)17-s + ⋯ |
| L(s) = 1 | + (0.612 − 0.353i)2-s + (1.01 − 0.588i)3-s + (0.249 − 0.433i)4-s + (0.602 − 0.798i)5-s + (0.416 − 0.721i)6-s + (−0.658 − 0.380i)7-s − 0.353i·8-s + (0.193 − 0.335i)9-s + (0.0865 − 0.701i)10-s + (0.415 + 0.718i)11-s − 0.588i·12-s + (−0.996 − 0.0799i)13-s − 0.537·14-s + (0.144 − 1.16i)15-s + (−0.125 − 0.216i)16-s + (1.46 + 0.845i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0655 + 0.997i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0655 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.30069 - 2.15460i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.30069 - 2.15460i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.73 + i)T \) |
| 5 | \( 1 + (-6.73 + 8.92i)T \) |
| 13 | \( 1 + (46.7 + 3.74i)T \) |
| good | 3 | \( 1 + (-5.30 + 3.05i)T + (13.5 - 23.3i)T^{2} \) |
| 7 | \( 1 + (12.2 + 7.04i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-15.1 - 26.2i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-102. - 59.2i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (42.4 - 73.5i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-136. + 78.8i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (78.2 + 135. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 - 117.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-10.5 + 6.06i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (-177. - 306. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (46.2 + 26.6i)T + (3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + 371. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 548. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + (213. - 369. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (136. - 236. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (348. - 201. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (251. - 436. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 - 780. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 4.34T + 4.93e5T^{2} \) |
| 83 | \( 1 + 405. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (596. + 1.03e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (1.40e3 + 811. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.74810274198449567053924660809, −12.15291890127489435513019276455, −10.26051715671045384959155343198, −9.579134190221954697023521413021, −8.318091039781387599337871085462, −7.16062930411227409235326950100, −5.79578915732590980188080292159, −4.31623158621328187118715193032, −2.79095541231632437231161315353, −1.45180110809035839876693472331,
2.76222397645250614106106174474, 3.37527836736654186615176487495, 5.17897300690614440216582758338, 6.45756423135100068229120371229, 7.56493037543502252725810762124, 9.120154632843168011769615725660, 9.636396201630656101447553632617, 10.99907820452552326716273040110, 12.26218377222286054028237501391, 13.45309764041815324427829502055