L(s) = 1 | + (21.3 + 21.3i)2-s + 58.3·3-s + 651. i·4-s + (−310. − 310. i)5-s + (1.24e3 + 1.24e3i)6-s + (2.55e3 − 2.55e3i)7-s + (−8.42e3 + 8.42e3i)8-s − 3.16e3·9-s − 1.32e4i·10-s + (−5.77e3 + 5.77e3i)11-s + 3.79e4i·12-s + (2.64e4 − 1.08e4i)13-s + 1.08e5·14-s + (−1.80e4 − 1.80e4i)15-s − 1.92e5·16-s − 9.12e4i·17-s + ⋯ |
L(s) = 1 | + (1.33 + 1.33i)2-s + 0.719·3-s + 2.54i·4-s + (−0.496 − 0.496i)5-s + (0.958 + 0.958i)6-s + (1.06 − 1.06i)7-s + (−2.05 + 2.05i)8-s − 0.481·9-s − 1.32i·10-s + (−0.394 + 0.394i)11-s + 1.83i·12-s + (0.925 − 0.379i)13-s + 2.82·14-s + (−0.357 − 0.357i)15-s − 2.93·16-s − 1.09i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0953 - 0.995i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.0953 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(2.26495 + 2.49224i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.26495 + 2.49224i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 + (-2.64e4 + 1.08e4i)T \) |
good | 2 | \( 1 + (-21.3 - 21.3i)T + 256iT^{2} \) |
| 3 | \( 1 - 58.3T + 6.56e3T^{2} \) |
| 5 | \( 1 + (310. + 310. i)T + 3.90e5iT^{2} \) |
| 7 | \( 1 + (-2.55e3 + 2.55e3i)T - 5.76e6iT^{2} \) |
| 11 | \( 1 + (5.77e3 - 5.77e3i)T - 2.14e8iT^{2} \) |
| 17 | \( 1 + 9.12e4iT - 6.97e9T^{2} \) |
| 19 | \( 1 + (-7.13e4 - 7.13e4i)T + 1.69e10iT^{2} \) |
| 23 | \( 1 - 2.15e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 + 9.16e5T + 5.00e11T^{2} \) |
| 31 | \( 1 + (-2.00e5 - 2.00e5i)T + 8.52e11iT^{2} \) |
| 37 | \( 1 + (1.78e6 - 1.78e6i)T - 3.51e12iT^{2} \) |
| 41 | \( 1 + (2.16e6 + 2.16e6i)T + 7.98e12iT^{2} \) |
| 43 | \( 1 - 2.68e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + (1.53e6 - 1.53e6i)T - 2.38e13iT^{2} \) |
| 53 | \( 1 - 1.09e7T + 6.22e13T^{2} \) |
| 59 | \( 1 + (-4.08e6 + 4.08e6i)T - 1.46e14iT^{2} \) |
| 61 | \( 1 - 1.40e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + (6.53e5 + 6.53e5i)T + 4.06e14iT^{2} \) |
| 71 | \( 1 + (6.95e6 + 6.95e6i)T + 6.45e14iT^{2} \) |
| 73 | \( 1 + (7.01e6 - 7.01e6i)T - 8.06e14iT^{2} \) |
| 79 | \( 1 - 4.87e7T + 1.51e15T^{2} \) |
| 83 | \( 1 + (-1.56e7 - 1.56e7i)T + 2.25e15iT^{2} \) |
| 89 | \( 1 + (2.63e6 - 2.63e6i)T - 3.93e15iT^{2} \) |
| 97 | \( 1 + (-2.21e7 - 2.21e7i)T + 7.83e15iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.76459409998675976373843919779, −16.51356261064430805964068751457, −15.33869109449716321717299275103, −14.15150343245468405697567309203, −13.41571072968467879691907836496, −11.66219684669114701353606748252, −8.336918668981246442114220072839, −7.46600750654230892019742917883, −5.16406961033509648662910748749, −3.67281150933524152840610968049,
2.10158591761409269204667990133, 3.56982792856184175731776008990, 5.55620453396861005615615353051, 8.695811800713136639413009192469, 10.93709475505070901762564202717, 11.74106791456610631145866771881, 13.37101046281103636142232568150, 14.59412226808058224059989022390, 15.25641947894382457549289063788, 18.44608244371013558197728155393