Properties

Label 2-13-13.7-c8-0-7
Degree $2$
Conductor $13$
Sign $0.543 + 0.839i$
Analytic cond. $5.29592$
Root an. cond. $2.30128$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (22.9 − 6.15i)2-s + (34.8 − 60.4i)3-s + (268. − 155. i)4-s + (−80.1 − 80.1i)5-s + (429. − 1.60e3i)6-s + (249. + 66.9i)7-s + (914. − 914. i)8-s + (847. + 1.46e3i)9-s + (−2.33e3 − 1.34e3i)10-s + (−193. − 723. i)11-s − 2.16e4i·12-s + (2.85e4 − 714. i)13-s + 6.15e3·14-s + (−7.64e3 + 2.04e3i)15-s + (−2.43e4 + 4.21e4i)16-s + (−9.85e4 + 5.68e4i)17-s + ⋯
L(s)  = 1  + (1.43 − 0.384i)2-s + (0.430 − 0.745i)3-s + (1.04 − 0.606i)4-s + (−0.128 − 0.128i)5-s + (0.331 − 1.23i)6-s + (0.104 + 0.0278i)7-s + (0.223 − 0.223i)8-s + (0.129 + 0.223i)9-s + (−0.233 − 0.134i)10-s + (−0.0132 − 0.0494i)11-s − 1.04i·12-s + (0.999 − 0.0250i)13-s + 0.160·14-s + (−0.150 + 0.0404i)15-s + (−0.371 + 0.643i)16-s + (−1.17 + 0.681i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.543 + 0.839i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.543 + 0.839i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $0.543 + 0.839i$
Analytic conductor: \(5.29592\)
Root analytic conductor: \(2.30128\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :4),\ 0.543 + 0.839i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(2.97777 - 1.61981i\)
\(L(\frac12)\) \(\approx\) \(2.97777 - 1.61981i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-2.85e4 + 714. i)T \)
good2 \( 1 + (-22.9 + 6.15i)T + (221. - 128i)T^{2} \)
3 \( 1 + (-34.8 + 60.4i)T + (-3.28e3 - 5.68e3i)T^{2} \)
5 \( 1 + (80.1 + 80.1i)T + 3.90e5iT^{2} \)
7 \( 1 + (-249. - 66.9i)T + (4.99e6 + 2.88e6i)T^{2} \)
11 \( 1 + (193. + 723. i)T + (-1.85e8 + 1.07e8i)T^{2} \)
17 \( 1 + (9.85e4 - 5.68e4i)T + (3.48e9 - 6.04e9i)T^{2} \)
19 \( 1 + (3.24e4 - 1.20e5i)T + (-1.47e10 - 8.49e9i)T^{2} \)
23 \( 1 + (9.53e4 + 5.50e4i)T + (3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (-3.12e5 + 5.40e5i)T + (-2.50e11 - 4.33e11i)T^{2} \)
31 \( 1 + (8.26e5 + 8.26e5i)T + 8.52e11iT^{2} \)
37 \( 1 + (3.91e5 + 1.46e6i)T + (-3.04e12 + 1.75e12i)T^{2} \)
41 \( 1 + (-3.80e6 + 1.01e6i)T + (6.91e12 - 3.99e12i)T^{2} \)
43 \( 1 + (7.43e5 - 4.28e5i)T + (5.84e12 - 1.01e13i)T^{2} \)
47 \( 1 + (2.80e6 - 2.80e6i)T - 2.38e13iT^{2} \)
53 \( 1 + 6.89e5T + 6.22e13T^{2} \)
59 \( 1 + (1.47e7 + 3.95e6i)T + (1.27e14 + 7.34e13i)T^{2} \)
61 \( 1 + (-9.16e6 - 1.58e7i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (-2.61e7 + 7.00e6i)T + (3.51e14 - 2.03e14i)T^{2} \)
71 \( 1 + (4.29e6 - 1.60e7i)T + (-5.59e14 - 3.22e14i)T^{2} \)
73 \( 1 + (5.10e6 - 5.10e6i)T - 8.06e14iT^{2} \)
79 \( 1 - 4.76e7T + 1.51e15T^{2} \)
83 \( 1 + (3.73e7 + 3.73e7i)T + 2.25e15iT^{2} \)
89 \( 1 + (-2.46e7 - 9.19e7i)T + (-3.40e15 + 1.96e15i)T^{2} \)
97 \( 1 + (1.64e7 - 6.13e7i)T + (-6.78e15 - 3.91e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.02843244185912283191788494697, −15.93381946628858405062549945614, −14.45357733728390656024570403680, −13.38672977495422250509738700542, −12.51953101648041361191690428876, −10.97323985153569852723121763352, −8.286308216801865721910053386680, −6.19289782043489197085752254105, −4.13068290293982169861998912448, −2.08993995189452524922352720506, 3.36106117753936992247853090939, 4.75351455031046809296308330228, 6.70713547184313075395834328020, 9.123705143336383438960383913963, 11.19276044113850278806191090391, 12.92958969164547832985167734872, 14.13464143559761492604428635364, 15.32635038991825058740574245834, 16.00351648584383716635198481299, 18.10455729832114395922861012307

Graph of the $Z$-function along the critical line