L(s) = 1 | + (13.2 − 13.2i)2-s + 7.30·3-s − 94.8i·4-s + (788. − 788. i)5-s + (96.6 − 96.6i)6-s + (−1.96e3 − 1.96e3i)7-s + (2.13e3 + 2.13e3i)8-s − 6.50e3·9-s − 2.08e4i·10-s + (1.04e4 + 1.04e4i)11-s − 692. i·12-s + (2.82e4 + 3.93e3i)13-s − 5.20e4·14-s + (5.75e3 − 5.75e3i)15-s + 8.08e4·16-s + 6.63e4i·17-s + ⋯ |
L(s) = 1 | + (0.827 − 0.827i)2-s + 0.0901·3-s − 0.370i·4-s + (1.26 − 1.26i)5-s + (0.0746 − 0.0746i)6-s + (−0.818 − 0.818i)7-s + (0.521 + 0.521i)8-s − 0.991·9-s − 2.08i·10-s + (0.710 + 0.710i)11-s − 0.0333i·12-s + (0.990 + 0.137i)13-s − 1.35·14-s + (0.113 − 0.113i)15-s + 1.23·16-s + 0.794i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.155 + 0.987i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.155 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.98471 - 1.69736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.98471 - 1.69736i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 + (-2.82e4 - 3.93e3i)T \) |
good | 2 | \( 1 + (-13.2 + 13.2i)T - 256iT^{2} \) |
| 3 | \( 1 - 7.30T + 6.56e3T^{2} \) |
| 5 | \( 1 + (-788. + 788. i)T - 3.90e5iT^{2} \) |
| 7 | \( 1 + (1.96e3 + 1.96e3i)T + 5.76e6iT^{2} \) |
| 11 | \( 1 + (-1.04e4 - 1.04e4i)T + 2.14e8iT^{2} \) |
| 17 | \( 1 - 6.63e4iT - 6.97e9T^{2} \) |
| 19 | \( 1 + (1.28e5 - 1.28e5i)T - 1.69e10iT^{2} \) |
| 23 | \( 1 - 1.16e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 + 3.37e4T + 5.00e11T^{2} \) |
| 31 | \( 1 + (4.24e5 - 4.24e5i)T - 8.52e11iT^{2} \) |
| 37 | \( 1 + (1.08e5 + 1.08e5i)T + 3.51e12iT^{2} \) |
| 41 | \( 1 + (-1.33e6 + 1.33e6i)T - 7.98e12iT^{2} \) |
| 43 | \( 1 + 5.44e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + (-1.46e6 - 1.46e6i)T + 2.38e13iT^{2} \) |
| 53 | \( 1 - 4.34e6T + 6.22e13T^{2} \) |
| 59 | \( 1 + (-4.07e4 - 4.07e4i)T + 1.46e14iT^{2} \) |
| 61 | \( 1 + 2.38e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + (1.68e7 - 1.68e7i)T - 4.06e14iT^{2} \) |
| 71 | \( 1 + (-2.75e6 + 2.75e6i)T - 6.45e14iT^{2} \) |
| 73 | \( 1 + (-5.38e6 - 5.38e6i)T + 8.06e14iT^{2} \) |
| 79 | \( 1 + 2.15e7T + 1.51e15T^{2} \) |
| 83 | \( 1 + (-1.59e6 + 1.59e6i)T - 2.25e15iT^{2} \) |
| 89 | \( 1 + (7.12e7 + 7.12e7i)T + 3.93e15iT^{2} \) |
| 97 | \( 1 + (-5.18e7 + 5.18e7i)T - 7.83e15iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.26525205356898082551166764419, −16.72795750404488912456048663612, −14.17222539706733871331558293241, −13.25898875180477271055817187569, −12.32529641567669745034981142537, −10.41649447530083176127801498752, −8.803926589619278123238919348727, −5.87027108654845085437272363210, −3.96583613947310360630415049569, −1.66800976048982456849415294158,
2.93170633778047652136089575625, 5.90159476172954177477371984639, 6.46502495126161960157512218511, 9.229225543549293771509540789618, 10.98220452401825863639475168148, 13.30004075583864950427896256903, 14.17669303366967253560104828959, 15.18051798379731529869010311392, 16.66691641179915459060719790638, 18.22424465581134263588044201046