L(s) = 1 | + (−3 − 1.73i)2-s + (3.5 − 6.06i)3-s + (2 + 3.46i)4-s + 13.8i·5-s + (−21 + 12.1i)6-s + (19.5 − 11.2i)7-s + 13.8i·8-s + (−11 − 19.0i)9-s + (23.9 − 41.5i)10-s + (−19.5 − 11.2i)11-s + 28.0·12-s + (−13 + 45.0i)13-s − 78·14-s + (84 + 48.4i)15-s + (39.9 − 69.2i)16-s + (−13.5 − 23.3i)17-s + ⋯ |
L(s) = 1 | + (−1.06 − 0.612i)2-s + (0.673 − 1.16i)3-s + (0.250 + 0.433i)4-s + 1.23i·5-s + (−1.42 + 0.824i)6-s + (1.05 − 0.607i)7-s + 0.612i·8-s + (−0.407 − 0.705i)9-s + (0.758 − 1.31i)10-s + (−0.534 − 0.308i)11-s + 0.673·12-s + (−0.277 + 0.960i)13-s − 1.48·14-s + (1.44 + 0.834i)15-s + (0.624 − 1.08i)16-s + (−0.192 − 0.333i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.566359 - 0.437474i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.566359 - 0.437474i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 + (13 - 45.0i)T \) |
good | 2 | \( 1 + (3 + 1.73i)T + (4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (-3.5 + 6.06i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 - 13.8iT - 125T^{2} \) |
| 7 | \( 1 + (-19.5 + 11.2i)T + (171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (19.5 + 11.2i)T + (665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (13.5 + 23.3i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (76.5 - 44.1i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (28.5 - 49.3i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-34.5 + 59.7i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + 72.7iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (34.5 + 19.9i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (340.5 + 196. i)T + (3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-42.5 - 73.6i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + 342. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 426T + 1.48e5T^{2} \) |
| 59 | \( 1 + (16.5 - 9.52i)T + (1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-8.5 - 14.7i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-142.5 - 82.2i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-505.5 + 291. i)T + (1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 - 1.00e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.24e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 426. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-265.5 - 153. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (-1.06e3 + 617. i)T + (4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.85927168084700490843340412488, −18.44175080340776231630660574013, −17.26214822321643194606012520434, −14.59910339934377349528497014381, −13.78044923184104415161506893934, −11.57781508819803023179857827817, −10.39776468923365132375400991003, −8.360288387817286688492718603371, −7.18864249379947825917987191008, −2.11014574367122488708249141919,
4.80198786544075143735648168099, 8.231085512020065232240113341638, 8.868693986454882017884086778155, 10.30179298841582890889348698943, 12.71056452343602839582459843870, 14.96920099474815101760947911563, 15.75822802309119482862262646720, 16.99354970851497277558510659429, 18.07827698741142481588090997022, 19.88636005144530613870746315734