L(s) = 1 | + 110. i·2-s + 787.·3-s − 3.92e3·4-s − 2.87e4i·5-s + 8.67e4i·6-s + 3.70e5i·7-s + 4.69e5i·8-s − 9.73e5·9-s + 3.16e6·10-s + 6.59e6i·11-s − 3.09e6·12-s + (1.62e7 + 6.29e6i)13-s − 4.08e7·14-s − 2.26e7i·15-s − 8.38e7·16-s − 1.44e8·17-s + ⋯ |
L(s) = 1 | + 1.21i·2-s + 0.623·3-s − 0.479·4-s − 0.823i·5-s + 0.758i·6-s + 1.19i·7-s + 0.633i·8-s − 0.610·9-s + 1.00·10-s + 1.12i·11-s − 0.299·12-s + (0.932 + 0.361i)13-s − 1.44·14-s − 0.514i·15-s − 1.24·16-s − 1.45·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.932 - 0.361i)\, \overline{\Lambda}(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & (-0.932 - 0.361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(7)\) |
\(\approx\) |
\(0.357167 + 1.90922i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.357167 + 1.90922i\) |
\(L(\frac{15}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 + (-1.62e7 - 6.29e6i)T \) |
good | 2 | \( 1 - 110. iT - 8.19e3T^{2} \) |
| 3 | \( 1 - 787.T + 1.59e6T^{2} \) |
| 5 | \( 1 + 2.87e4iT - 1.22e9T^{2} \) |
| 7 | \( 1 - 3.70e5iT - 9.68e10T^{2} \) |
| 11 | \( 1 - 6.59e6iT - 3.45e13T^{2} \) |
| 17 | \( 1 + 1.44e8T + 9.90e15T^{2} \) |
| 19 | \( 1 - 6.36e7iT - 4.20e16T^{2} \) |
| 23 | \( 1 - 3.74e8T + 5.04e17T^{2} \) |
| 29 | \( 1 - 4.23e9T + 1.02e19T^{2} \) |
| 31 | \( 1 + 4.92e9iT - 2.44e19T^{2} \) |
| 37 | \( 1 - 2.27e10iT - 2.43e20T^{2} \) |
| 41 | \( 1 - 1.61e10iT - 9.25e20T^{2} \) |
| 43 | \( 1 + 1.62e10T + 1.71e21T^{2} \) |
| 47 | \( 1 + 7.34e10iT - 5.46e21T^{2} \) |
| 53 | \( 1 - 6.38e10T + 2.60e22T^{2} \) |
| 59 | \( 1 - 1.09e11iT - 1.04e23T^{2} \) |
| 61 | \( 1 - 6.41e11T + 1.61e23T^{2} \) |
| 67 | \( 1 + 4.51e11iT - 5.48e23T^{2} \) |
| 71 | \( 1 + 1.41e12iT - 1.16e24T^{2} \) |
| 73 | \( 1 - 1.80e11iT - 1.67e24T^{2} \) |
| 79 | \( 1 - 3.28e12T + 4.66e24T^{2} \) |
| 83 | \( 1 - 1.66e12iT - 8.87e24T^{2} \) |
| 89 | \( 1 + 6.68e12iT - 2.19e25T^{2} \) |
| 97 | \( 1 - 1.69e12iT - 6.73e25T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.95974391455892872262211836832, −15.63277524201187613959394204283, −14.90252268098627390714056897100, −13.38268536663445215435970740409, −11.71569223756969737306724146811, −9.010626353909122025615573851400, −8.340869693992957136886967531642, −6.42136718947232124281588926013, −4.90178286988232730803242381368, −2.24008329997840964039107368005,
0.73926801567107482093439016659, 2.70194640772772156882016514444, 3.71651114882558683697861390457, 6.74405151359136037238050497382, 8.737533317430541574456033464493, 10.65900090435168696198462010612, 11.15113692691908888885907897059, 13.26892839768944761200924926979, 14.13744032440233731922770259306, 15.92119355406019130790476925907