L(s) = 1 | − 131. i·2-s − 1.77e3·3-s − 9.07e3·4-s + 2.77e4i·5-s + 2.33e5i·6-s + 2.61e3i·7-s + 1.16e5i·8-s + 1.55e6·9-s + 3.64e6·10-s + 4.76e6i·11-s + 1.61e7·12-s + (−1.21e7 − 1.24e7i)13-s + 3.43e5·14-s − 4.92e7i·15-s − 5.90e7·16-s + 9.78e7·17-s + ⋯ |
L(s) = 1 | − 1.45i·2-s − 1.40·3-s − 1.10·4-s + 0.794i·5-s + 2.04i·6-s + 0.00839i·7-s + 0.157i·8-s + 0.974·9-s + 1.15·10-s + 0.810i·11-s + 1.55·12-s + (−0.698 − 0.715i)13-s + 0.0121·14-s − 1.11i·15-s − 0.880·16-s + 0.982·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(7)\) |
\(\approx\) |
\(0.833261 - 0.351200i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.833261 - 0.351200i\) |
\(L(\frac{15}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 + (1.21e7 + 1.24e7i)T \) |
good | 2 | \( 1 + 131. iT - 8.19e3T^{2} \) |
| 3 | \( 1 + 1.77e3T + 1.59e6T^{2} \) |
| 5 | \( 1 - 2.77e4iT - 1.22e9T^{2} \) |
| 7 | \( 1 - 2.61e3iT - 9.68e10T^{2} \) |
| 11 | \( 1 - 4.76e6iT - 3.45e13T^{2} \) |
| 17 | \( 1 - 9.78e7T + 9.90e15T^{2} \) |
| 19 | \( 1 + 1.43e6iT - 4.20e16T^{2} \) |
| 23 | \( 1 - 1.30e9T + 5.04e17T^{2} \) |
| 29 | \( 1 + 6.55e8T + 1.02e19T^{2} \) |
| 31 | \( 1 - 6.23e8iT - 2.44e19T^{2} \) |
| 37 | \( 1 - 2.16e10iT - 2.43e20T^{2} \) |
| 41 | \( 1 - 4.45e10iT - 9.25e20T^{2} \) |
| 43 | \( 1 - 1.29e10T + 1.71e21T^{2} \) |
| 47 | \( 1 + 8.80e10iT - 5.46e21T^{2} \) |
| 53 | \( 1 + 1.70e11T + 2.60e22T^{2} \) |
| 59 | \( 1 - 1.83e11iT - 1.04e23T^{2} \) |
| 61 | \( 1 - 4.23e11T + 1.61e23T^{2} \) |
| 67 | \( 1 - 5.57e11iT - 5.48e23T^{2} \) |
| 71 | \( 1 + 2.04e12iT - 1.16e24T^{2} \) |
| 73 | \( 1 - 2.15e12iT - 1.67e24T^{2} \) |
| 79 | \( 1 - 3.60e11T + 4.66e24T^{2} \) |
| 83 | \( 1 + 6.69e11iT - 8.87e24T^{2} \) |
| 89 | \( 1 - 6.83e12iT - 2.19e25T^{2} \) |
| 97 | \( 1 - 8.53e12iT - 6.73e25T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.90247812738523202056522800469, −14.99142316602998870046704037756, −12.85935906586316002441353531997, −11.86927267995549463616426661202, −10.81064061379175678528717656451, −9.932754828928255582851815311566, −6.91847493716484478048106229155, −4.98636468645185363232632128872, −2.93227198447657266137674717804, −0.974959406605782532091826313096,
0.61664747459213649909888340868, 4.88319494268489296138412955741, 5.78990925550426030945393677158, 7.19902653640115849049931263402, 8.970651552099695015454189983210, 11.14479812401733119166595902714, 12.57563623262739380100433341308, 14.32803116977430005735304946296, 15.96982973842176312595875118825, 16.79536012841395226985006745323