Properties

Label 2-13-1.1-c9-0-7
Degree $2$
Conductor $13$
Sign $-1$
Analytic cond. $6.69546$
Root an. cond. $2.58755$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.35·2-s + 42.6·3-s − 457.·4-s − 1.23e3·5-s + 313.·6-s + 892.·7-s − 7.13e3·8-s − 1.78e4·9-s − 9.09e3·10-s − 2.71e4·11-s − 1.95e4·12-s − 2.85e4·13-s + 6.56e3·14-s − 5.26e4·15-s + 1.81e5·16-s − 3.46e4·17-s − 1.31e5·18-s + 4.28e5·19-s + 5.66e5·20-s + 3.80e4·21-s − 1.99e5·22-s + 2.03e6·23-s − 3.04e5·24-s − 4.24e5·25-s − 2.10e5·26-s − 1.60e6·27-s − 4.08e5·28-s + ⋯
L(s)  = 1  + 0.325·2-s + 0.303·3-s − 0.894·4-s − 0.884·5-s + 0.0987·6-s + 0.140·7-s − 0.615·8-s − 0.907·9-s − 0.287·10-s − 0.559·11-s − 0.271·12-s − 0.277·13-s + 0.0456·14-s − 0.268·15-s + 0.694·16-s − 0.100·17-s − 0.295·18-s + 0.755·19-s + 0.791·20-s + 0.0426·21-s − 0.181·22-s + 1.51·23-s − 0.187·24-s − 0.217·25-s − 0.0901·26-s − 0.579·27-s − 0.125·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $-1$
Analytic conductor: \(6.69546\)
Root analytic conductor: \(2.58755\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 13,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + 2.85e4T \)
good2 \( 1 - 7.35T + 512T^{2} \)
3 \( 1 - 42.6T + 1.96e4T^{2} \)
5 \( 1 + 1.23e3T + 1.95e6T^{2} \)
7 \( 1 - 892.T + 4.03e7T^{2} \)
11 \( 1 + 2.71e4T + 2.35e9T^{2} \)
17 \( 1 + 3.46e4T + 1.18e11T^{2} \)
19 \( 1 - 4.28e5T + 3.22e11T^{2} \)
23 \( 1 - 2.03e6T + 1.80e12T^{2} \)
29 \( 1 + 5.26e6T + 1.45e13T^{2} \)
31 \( 1 + 4.15e6T + 2.64e13T^{2} \)
37 \( 1 + 7.58e6T + 1.29e14T^{2} \)
41 \( 1 + 4.92e6T + 3.27e14T^{2} \)
43 \( 1 - 1.71e7T + 5.02e14T^{2} \)
47 \( 1 + 2.95e7T + 1.11e15T^{2} \)
53 \( 1 + 2.72e7T + 3.29e15T^{2} \)
59 \( 1 + 1.13e8T + 8.66e15T^{2} \)
61 \( 1 + 3.76e7T + 1.16e16T^{2} \)
67 \( 1 - 1.90e8T + 2.72e16T^{2} \)
71 \( 1 - 6.87e7T + 4.58e16T^{2} \)
73 \( 1 - 3.61e8T + 5.88e16T^{2} \)
79 \( 1 + 1.42e8T + 1.19e17T^{2} \)
83 \( 1 + 5.80e7T + 1.86e17T^{2} \)
89 \( 1 + 8.59e8T + 3.50e17T^{2} \)
97 \( 1 - 1.46e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.07393907198354444207628956339, −15.33256819579566625066153488249, −14.22505092003998841012283411943, −12.85445491453793972570809894225, −11.31969655516604555701088514367, −9.196526681358649258536784772497, −7.82905030775083749862309007042, −5.19631160721890757832532363900, −3.38532871414856603989847282361, 0, 3.38532871414856603989847282361, 5.19631160721890757832532363900, 7.82905030775083749862309007042, 9.196526681358649258536784772497, 11.31969655516604555701088514367, 12.85445491453793972570809894225, 14.22505092003998841012283411943, 15.33256819579566625066153488249, 17.07393907198354444207628956339

Graph of the $Z$-function along the critical line