Properties

Label 2-12e3-4.3-c2-0-6
Degree $2$
Conductor $1728$
Sign $-i$
Analytic cond. $47.0845$
Root an. cond. $6.86182$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.70·5-s − 11.6i·7-s + 15.5i·11-s + 8·13-s − 26.8·17-s − 23.2i·19-s − 31.1i·23-s + 20.0·25-s − 13.4·29-s + 11.6i·31-s + 77.9i·35-s − 2·37-s + 40.2·41-s − 23.2i·43-s − 31.1i·47-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.65i·7-s + 1.41i·11-s + 0.615·13-s − 1.57·17-s − 1.22i·19-s − 1.35i·23-s + 0.800·25-s − 0.462·29-s + 0.374i·31-s + 2.22i·35-s − 0.0540·37-s + 0.981·41-s − 0.540i·43-s − 0.663i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $-i$
Analytic conductor: \(47.0845\)
Root analytic conductor: \(6.86182\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1728} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :1),\ -i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.4179191076\)
\(L(\frac12)\) \(\approx\) \(0.4179191076\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 6.70T + 25T^{2} \)
7 \( 1 + 11.6iT - 49T^{2} \)
11 \( 1 - 15.5iT - 121T^{2} \)
13 \( 1 - 8T + 169T^{2} \)
17 \( 1 + 26.8T + 289T^{2} \)
19 \( 1 + 23.2iT - 361T^{2} \)
23 \( 1 + 31.1iT - 529T^{2} \)
29 \( 1 + 13.4T + 841T^{2} \)
31 \( 1 - 11.6iT - 961T^{2} \)
37 \( 1 + 2T + 1.36e3T^{2} \)
41 \( 1 - 40.2T + 1.68e3T^{2} \)
43 \( 1 + 23.2iT - 1.84e3T^{2} \)
47 \( 1 + 31.1iT - 2.20e3T^{2} \)
53 \( 1 + 20.1T + 2.80e3T^{2} \)
59 \( 1 - 62.3iT - 3.48e3T^{2} \)
61 \( 1 + 104T + 3.72e3T^{2} \)
67 \( 1 - 69.7iT - 4.48e3T^{2} \)
71 \( 1 - 62.3iT - 5.04e3T^{2} \)
73 \( 1 - 61T + 5.32e3T^{2} \)
79 \( 1 - 92.9iT - 6.24e3T^{2} \)
83 \( 1 - 77.9iT - 6.88e3T^{2} \)
89 \( 1 - 147.T + 7.92e3T^{2} \)
97 \( 1 - 103T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.236975536103705133254321007710, −8.475795878092344950539511290737, −7.55161293841816779460186639690, −7.07350572983151701961871963033, −6.54019824833956078184268976995, −4.75274042403441174739100875855, −4.34808947721387432917751022335, −3.74049585135861123837115209434, −2.37215072993284779222685424203, −0.858315317033548896129516147632, 0.14526050983063020521515213326, 1.80996296196706377800845717985, 3.09699210620809449499052393467, 3.71574570850063050314310447410, 4.79338074044487663673143746573, 5.92553645230919867364688267683, 6.22168114863865587815448351150, 7.68646800242655541279378763898, 8.125056757034416243095272316366, 8.924164624426313496578129764243

Graph of the $Z$-function along the critical line