L(s) = 1 | + (3.07 − 5.32i)5-s + (0.511 − 0.295i)7-s + (15.1 − 8.72i)11-s + (0.892 − 1.54i)13-s + 16.9·17-s − 19.5i·19-s + (6.86 + 3.96i)23-s + (−6.39 − 11.0i)25-s + (3.17 + 5.49i)29-s + (27.6 + 15.9i)31-s − 3.63i·35-s − 58.2·37-s + (2.66 − 4.62i)41-s + (33.9 − 19.5i)43-s + (9.64 − 5.56i)47-s + ⋯ |
L(s) = 1 | + (0.614 − 1.06i)5-s + (0.0730 − 0.0421i)7-s + (1.37 − 0.793i)11-s + (0.0686 − 0.118i)13-s + 0.995·17-s − 1.02i·19-s + (0.298 + 0.172i)23-s + (−0.255 − 0.443i)25-s + (0.109 + 0.189i)29-s + (0.892 + 0.515i)31-s − 0.103i·35-s − 1.57·37-s + (0.0651 − 0.112i)41-s + (0.789 − 0.455i)43-s + (0.205 − 0.118i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.224 + 0.974i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.224 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.680221356\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.680221356\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-3.07 + 5.32i)T + (-12.5 - 21.6i)T^{2} \) |
| 7 | \( 1 + (-0.511 + 0.295i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-15.1 + 8.72i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-0.892 + 1.54i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 - 16.9T + 289T^{2} \) |
| 19 | \( 1 + 19.5iT - 361T^{2} \) |
| 23 | \( 1 + (-6.86 - 3.96i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-3.17 - 5.49i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-27.6 - 15.9i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 58.2T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-2.66 + 4.62i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-33.9 + 19.5i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-9.64 + 5.56i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 35.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + (20.8 + 12.0i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-37.9 - 65.7i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-31.8 - 18.3i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 87.8iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 60.0T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-32.1 + 18.5i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (66.0 - 38.1i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 27.5T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-13.0 - 22.6i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.894219752700778713346136675902, −8.522242355135316319660181060951, −7.34527666814831558103605051899, −6.48513519176232101102795579598, −5.63639704605707142920543653046, −4.97146765202814535568574754726, −3.97478062555561719574574937932, −2.97237958466407108363120293881, −1.50354000524587270392901385842, −0.810394825176548256394342789308,
1.29183292968759141083709220295, 2.26494748873455647026973500464, 3.36726464977220866579248034517, 4.18026814969849220280965462665, 5.36625041275737731236570991188, 6.27717482506416998539497986661, 6.77834131299732864512695902780, 7.59655636455603902808335251378, 8.546090911132478190601816818300, 9.525669820935887900809986206864