| L(s) = 1 | + 7.74·5-s − 8.66·7-s − 13.4·11-s + 5.19i·13-s − 13.4i·17-s + 23i·19-s − 7.74i·23-s + 35.0·25-s + 30.9·29-s − 6.92·31-s − 67.0·35-s − 29.4i·37-s − 80.4i·41-s − 38i·43-s − 54.2i·47-s + ⋯ |
| L(s) = 1 | + 1.54·5-s − 1.23·7-s − 1.21·11-s + 0.399i·13-s − 0.789i·17-s + 1.21i·19-s − 0.336i·23-s + 1.40·25-s + 1.06·29-s − 0.223·31-s − 1.91·35-s − 0.795i·37-s − 1.96i·41-s − 0.883i·43-s − 1.15i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.257136072\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.257136072\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 - 7.74T + 25T^{2} \) |
| 7 | \( 1 + 8.66T + 49T^{2} \) |
| 11 | \( 1 + 13.4T + 121T^{2} \) |
| 13 | \( 1 - 5.19iT - 169T^{2} \) |
| 17 | \( 1 + 13.4iT - 289T^{2} \) |
| 19 | \( 1 - 23iT - 361T^{2} \) |
| 23 | \( 1 + 7.74iT - 529T^{2} \) |
| 29 | \( 1 - 30.9T + 841T^{2} \) |
| 31 | \( 1 + 6.92T + 961T^{2} \) |
| 37 | \( 1 + 29.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 80.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 38iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 54.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 77.4T + 2.80e3T^{2} \) |
| 59 | \( 1 - 93.9T + 3.48e3T^{2} \) |
| 61 | \( 1 + 60.6iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 107iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 15.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 97T + 5.32e3T^{2} \) |
| 79 | \( 1 - 67.5T + 6.24e3T^{2} \) |
| 83 | \( 1 + 6.88e3T^{2} \) |
| 89 | \( 1 - 174. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 109T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.156149890887689346231239811366, −8.211583682332930630964823796808, −7.09888089491202305410171934857, −6.44961060149222597139232993006, −5.65423885717600147397184948910, −5.10243300908389727058479309004, −3.68649452024599399459345860917, −2.67480374632389948999105020585, −1.94303370916308223012812140664, −0.31776103299037399007896110072,
1.24167143392576385544126125643, 2.65293148383394911633890595707, 2.99088914252751672436658939537, 4.59038294356818743283479328561, 5.44901565927722689532919277385, 6.20023374793383929548291486979, 6.68273980784877936733999004885, 7.81789154018693854327744688919, 8.719238733588271162499448720444, 9.587026893368136201498987844806