Properties

Label 2-12e3-1.1-c3-0-35
Degree $2$
Conductor $1728$
Sign $1$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.54·5-s + 8.54·7-s + 11-s + 8·13-s + 102.·17-s + 119.·19-s + 18·23-s − 52.0·25-s − 119.·29-s + 93.9·31-s + 72.9·35-s + 146·37-s − 85.4·41-s − 222.·43-s + 106·47-s − 270·49-s + 299.·53-s + 8.54·55-s + 20·59-s + 408·61-s + 68.3·65-s + 598.·67-s − 20·71-s − 591·73-s + 8.54·77-s + 683.·79-s + 345·83-s + ⋯
L(s)  = 1  + 0.764·5-s + 0.461·7-s + 0.0274·11-s + 0.170·13-s + 1.46·17-s + 1.44·19-s + 0.163·23-s − 0.416·25-s − 0.765·29-s + 0.544·31-s + 0.352·35-s + 0.648·37-s − 0.325·41-s − 0.787·43-s + 0.328·47-s − 0.787·49-s + 0.775·53-s + 0.0209·55-s + 0.0441·59-s + 0.856·61-s + 0.130·65-s + 1.09·67-s − 0.0334·71-s − 0.947·73-s + 0.0126·77-s + 0.973·79-s + 0.456·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.166650363\)
\(L(\frac12)\) \(\approx\) \(3.166650363\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 8.54T + 125T^{2} \)
7 \( 1 - 8.54T + 343T^{2} \)
11 \( 1 - T + 1.33e3T^{2} \)
13 \( 1 - 8T + 2.19e3T^{2} \)
17 \( 1 - 102.T + 4.91e3T^{2} \)
19 \( 1 - 119.T + 6.85e3T^{2} \)
23 \( 1 - 18T + 1.21e4T^{2} \)
29 \( 1 + 119.T + 2.43e4T^{2} \)
31 \( 1 - 93.9T + 2.97e4T^{2} \)
37 \( 1 - 146T + 5.06e4T^{2} \)
41 \( 1 + 85.4T + 6.89e4T^{2} \)
43 \( 1 + 222.T + 7.95e4T^{2} \)
47 \( 1 - 106T + 1.03e5T^{2} \)
53 \( 1 - 299.T + 1.48e5T^{2} \)
59 \( 1 - 20T + 2.05e5T^{2} \)
61 \( 1 - 408T + 2.26e5T^{2} \)
67 \( 1 - 598.T + 3.00e5T^{2} \)
71 \( 1 + 20T + 3.57e5T^{2} \)
73 \( 1 + 591T + 3.89e5T^{2} \)
79 \( 1 - 683.T + 4.93e5T^{2} \)
83 \( 1 - 345T + 5.71e5T^{2} \)
89 \( 1 + 222.T + 7.04e5T^{2} \)
97 \( 1 + 1.24e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.076711312530352854120303407241, −8.053354183754915996755404035190, −7.51361326868520746330958371068, −6.48986362485961314301649082726, −5.55657509747208768155164280030, −5.14736816795559432923617116088, −3.85648373260802052324975502822, −2.94642202039581870532625287037, −1.77910959052758996853578676943, −0.900721613741799595041368723147, 0.900721613741799595041368723147, 1.77910959052758996853578676943, 2.94642202039581870532625287037, 3.85648373260802052324975502822, 5.14736816795559432923617116088, 5.55657509747208768155164280030, 6.48986362485961314301649082726, 7.51361326868520746330958371068, 8.053354183754915996755404035190, 9.076711312530352854120303407241

Graph of the $Z$-function along the critical line