Properties

Label 2-12e3-1.1-c3-0-28
Degree $2$
Conductor $1728$
Sign $1$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.08·5-s + 30.4·7-s − 43·11-s − 52·13-s − 85.1·19-s − 42·23-s − 88·25-s + 279.·29-s + 115.·31-s + 185·35-s − 82·37-s + 450.·41-s + 377.·43-s + 74·47-s + 582·49-s + 285.·53-s − 261.·55-s − 20·59-s − 576·61-s − 316.·65-s + 669.·67-s + 1.01e3·71-s + 645·73-s − 1.30e3·77-s − 121.·79-s + 693·83-s + 133.·89-s + ⋯
L(s)  = 1  + 0.544·5-s + 1.64·7-s − 1.17·11-s − 1.10·13-s − 1.02·19-s − 0.380·23-s − 0.703·25-s + 1.79·29-s + 0.669·31-s + 0.893·35-s − 0.364·37-s + 1.71·41-s + 1.33·43-s + 0.229·47-s + 1.69·49-s + 0.740·53-s − 0.641·55-s − 0.0441·59-s − 1.20·61-s − 0.603·65-s + 1.22·67-s + 1.69·71-s + 1.03·73-s − 1.93·77-s − 0.173·79-s + 0.916·83-s + 0.159·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.576105530\)
\(L(\frac12)\) \(\approx\) \(2.576105530\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 6.08T + 125T^{2} \)
7 \( 1 - 30.4T + 343T^{2} \)
11 \( 1 + 43T + 1.33e3T^{2} \)
13 \( 1 + 52T + 2.19e3T^{2} \)
17 \( 1 + 4.91e3T^{2} \)
19 \( 1 + 85.1T + 6.85e3T^{2} \)
23 \( 1 + 42T + 1.21e4T^{2} \)
29 \( 1 - 279.T + 2.43e4T^{2} \)
31 \( 1 - 115.T + 2.97e4T^{2} \)
37 \( 1 + 82T + 5.06e4T^{2} \)
41 \( 1 - 450.T + 6.89e4T^{2} \)
43 \( 1 - 377.T + 7.95e4T^{2} \)
47 \( 1 - 74T + 1.03e5T^{2} \)
53 \( 1 - 285.T + 1.48e5T^{2} \)
59 \( 1 + 20T + 2.05e5T^{2} \)
61 \( 1 + 576T + 2.26e5T^{2} \)
67 \( 1 - 669.T + 3.00e5T^{2} \)
71 \( 1 - 1.01e3T + 3.57e5T^{2} \)
73 \( 1 - 645T + 3.89e5T^{2} \)
79 \( 1 + 121.T + 4.93e5T^{2} \)
83 \( 1 - 693T + 5.71e5T^{2} \)
89 \( 1 - 133.T + 7.04e5T^{2} \)
97 \( 1 - 1.25e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.868172237499114306141080360758, −7.955286123454932430116244800774, −7.72565926112990690306176361262, −6.51877866852791746816486879131, −5.55416088397044111419674319195, −4.87860792830964178576597640637, −4.23886557731481033638346016729, −2.52249499604647390080798404161, −2.12723139164592059555638474632, −0.75420465872900125380183043880, 0.75420465872900125380183043880, 2.12723139164592059555638474632, 2.52249499604647390080798404161, 4.23886557731481033638346016729, 4.87860792830964178576597640637, 5.55416088397044111419674319195, 6.51877866852791746816486879131, 7.72565926112990690306176361262, 7.955286123454932430116244800774, 8.868172237499114306141080360758

Graph of the $Z$-function along the critical line