L(s) = 1 | + (0.189 − 0.328i)2-s + (−0.313 − 0.543i)3-s + (0.927 + 1.60i)4-s + (−0.5 + 0.866i)5-s − 0.238·6-s + (−2.24 − 1.40i)7-s + 1.46·8-s + (1.30 − 2.25i)9-s + (0.189 + 0.328i)10-s + (−0.195 − 0.338i)11-s + (0.582 − 1.00i)12-s − 5.61·13-s + (−0.887 + 0.469i)14-s + 0.627·15-s + (−1.57 + 2.73i)16-s + (−1.36 − 2.36i)17-s + ⋯ |
L(s) = 1 | + (0.134 − 0.232i)2-s + (−0.181 − 0.313i)3-s + (0.463 + 0.803i)4-s + (−0.223 + 0.387i)5-s − 0.0972·6-s + (−0.846 − 0.532i)7-s + 0.517·8-s + (0.434 − 0.752i)9-s + (0.0600 + 0.103i)10-s + (−0.0588 − 0.101i)11-s + (0.168 − 0.291i)12-s − 1.55·13-s + (−0.237 + 0.125i)14-s + 0.162·15-s + (−0.394 + 0.683i)16-s + (−0.331 − 0.573i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0259i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0259i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1351280566\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1351280566\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (2.24 + 1.40i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.189 + 0.328i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.313 + 0.543i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (0.195 + 0.338i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.61T + 13T^{2} \) |
| 17 | \( 1 + (1.36 + 2.36i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.29 - 5.71i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.941 + 1.63i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 1.03T + 29T^{2} \) |
| 31 | \( 1 + (1.06 + 1.84i)T + (-15.5 + 26.8i)T^{2} \) |
| 41 | \( 1 + 9.05T + 41T^{2} \) |
| 43 | \( 1 + 5.44T + 43T^{2} \) |
| 47 | \( 1 + (0.0948 - 0.164i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.49 + 6.05i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.28 + 5.69i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.21 + 3.83i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.06 + 8.77i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.15T + 71T^{2} \) |
| 73 | \( 1 + (0.00378 + 0.00656i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.674 + 1.16i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11.5T + 83T^{2} \) |
| 89 | \( 1 + (2.78 - 4.81i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 15.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.449622651138892542766637823478, −8.225207731952509485386758985367, −7.45162399059316474972532818584, −6.80941804755324805769478970772, −6.32535712260699399629052191852, −4.78974414424570431114895980589, −3.79627063011956318002062392108, −3.10658966991797122789953752134, −1.97679101154005789031235444611, −0.04914617825468748284084184210,
1.86707278824164632289358861846, 2.81945662028868864298301605015, 4.43785383646456975178617481160, 4.99291701126385333463055644554, 5.79588327531532024622434875418, 6.84923474435280008113912240005, 7.30657777273470639084154045976, 8.532301661034706575590030700601, 9.412296025557099751201463188401, 10.07902658196190931104842288610