Properties

Label 2-1280-40.3-c1-0-8
Degree 22
Conductor 12801280
Sign 0.973+0.229i0.973 + 0.229i
Analytic cond. 10.220810.2208
Root an. cond. 3.197003.19700
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.73 − 1.73i)3-s + (−2 − i)5-s + (1.73 + 1.73i)7-s + 2.99i·9-s − 3.46·11-s + (1 − i)13-s + (1.73 + 5.19i)15-s + (1 − i)17-s + 6.92i·19-s − 5.99i·21-s + (−1.73 + 1.73i)23-s + (3 + 4i)25-s + 4·29-s − 3.46i·31-s + (5.99 + 5.99i)33-s + ⋯
L(s)  = 1  + (−0.999 − 0.999i)3-s + (−0.894 − 0.447i)5-s + (0.654 + 0.654i)7-s + 0.999i·9-s − 1.04·11-s + (0.277 − 0.277i)13-s + (0.447 + 1.34i)15-s + (0.242 − 0.242i)17-s + 1.58i·19-s − 1.30i·21-s + (−0.361 + 0.361i)23-s + (0.600 + 0.800i)25-s + 0.742·29-s − 0.622i·31-s + (1.04 + 1.04i)33-s + ⋯

Functional equation

Λ(s)=(1280s/2ΓC(s)L(s)=((0.973+0.229i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1280s/2ΓC(s+1/2)L(s)=((0.973+0.229i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 12801280    =    2852^{8} \cdot 5
Sign: 0.973+0.229i0.973 + 0.229i
Analytic conductor: 10.220810.2208
Root analytic conductor: 3.197003.19700
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1280(383,)\chi_{1280} (383, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1280, ( :1/2), 0.973+0.229i)(2,\ 1280,\ (\ :1/2),\ 0.973 + 0.229i)

Particular Values

L(1)L(1) \approx 0.81351951140.8135195114
L(12)L(\frac12) \approx 0.81351951140.8135195114
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+(2+i)T 1 + (2 + i)T
good3 1+(1.73+1.73i)T+3iT2 1 + (1.73 + 1.73i)T + 3iT^{2}
7 1+(1.731.73i)T+7iT2 1 + (-1.73 - 1.73i)T + 7iT^{2}
11 1+3.46T+11T2 1 + 3.46T + 11T^{2}
13 1+(1+i)T13iT2 1 + (-1 + i)T - 13iT^{2}
17 1+(1+i)T17iT2 1 + (-1 + i)T - 17iT^{2}
19 16.92iT19T2 1 - 6.92iT - 19T^{2}
23 1+(1.731.73i)T23iT2 1 + (1.73 - 1.73i)T - 23iT^{2}
29 14T+29T2 1 - 4T + 29T^{2}
31 1+3.46iT31T2 1 + 3.46iT - 31T^{2}
37 1+(55i)T+37iT2 1 + (-5 - 5i)T + 37iT^{2}
41 1+2T+41T2 1 + 2T + 41T^{2}
43 1+(1.731.73i)T+43iT2 1 + (-1.73 - 1.73i)T + 43iT^{2}
47 1+(1.73+1.73i)T+47iT2 1 + (1.73 + 1.73i)T + 47iT^{2}
53 1+(7+7i)T53iT2 1 + (-7 + 7i)T - 53iT^{2}
59 16.92iT59T2 1 - 6.92iT - 59T^{2}
61 1+6iT61T2 1 + 6iT - 61T^{2}
67 1+(5.19+5.19i)T67iT2 1 + (-5.19 + 5.19i)T - 67iT^{2}
71 1+10.3iT71T2 1 + 10.3iT - 71T^{2}
73 1+(77i)T+73iT2 1 + (-7 - 7i)T + 73iT^{2}
79 1+79T2 1 + 79T^{2}
83 1+(12.112.1i)T+83iT2 1 + (-12.1 - 12.1i)T + 83iT^{2}
89 1+8iT89T2 1 + 8iT - 89T^{2}
97 1+(77i)T97iT2 1 + (7 - 7i)T - 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.728085966180043629719815206713, −8.327575378878095820709287966216, −8.059944996275376094095915806533, −7.31372481038622611662331887268, −6.20046281201546766898151929982, −5.49417876278610238580917008599, −4.82787669480671824358480454860, −3.52288164616723216047463528685, −2.05601865727651715919998004771, −0.844412216663648797129275997289, 0.57071229291142128264431326086, 2.67356148997737691957147354396, 3.93090077919749968533425366975, 4.58329646297923248248155734147, 5.22749700962056678580572602532, 6.34242811483932212847056428215, 7.26335686883943130900090418164, 7.992988578973072145542007330374, 8.915206338596683761934500164856, 10.07127256356057522567139878936

Graph of the ZZ-function along the critical line